25.6 problem 6

25.6.1 Maple step by step solution

Internal problem ID [10822]
Internal file name [OUTPUT/9804_Sunday_June_19_2022_09_25_42_PM_60888452/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2. Equations of the form \((g_1(x)+g_0(x))y'=f_2(x) y^2+f_1(x) y+f_0(x)\)
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[_rational, [_Abel, `2nd type`, `class B`]]

Unable to solve or complete the solution.

\[ \boxed {y y^{\prime } x -a y^{2}-y b=c \,x^{n}+s} \] Unable to determine ODE type.

25.6.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y y^{\prime } x -a y^{2}-y b =c \,x^{n}+s \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {a y^{2}+y b +c \,x^{n}+s}{y x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
trying Abel 
   Looking for potential symmetries 
   Looking for potential symmetries 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
--- trying a change of variables {x -> y(x), y(x) -> x} 
differential order: 1; trying a linearization to 2nd order 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x)+(x^n*y(x)*c*n-x^n*y(x)*c-y(x)*s+2*a*x)/(x*(x^n*c+s)), y(x)`      *** Sublevel 2 * 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x)+(-x*n+y(x))/x, y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(a*x^2-s)/(x*(a*x^2+b*x+s)), y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
-> trying a symmetry pattern of the form [F(x),G(x)] 
-> trying a symmetry pattern of the form [F(y),G(y)] 
-> trying a symmetry pattern of the form [F(x)+G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)+G(y)] 
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
-> trying a symmetry pattern of conformal type`
 

Solution by Maple

dsolve(x*y(x)*diff(y(x),x)=a*y(x)^2+b*y(x)+c*x^n+s,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x*y[x]*y'[x]==a*y[x]^2+b*y[x]+c*x^n+s,y[x],x,IncludeSingularSolutions -> True]
 

Not solved