26.4 problem 4

26.4.1 Solving as second order bessel ode ode
26.4.2 Maple step by step solution

Internal problem ID [10827]
Internal file name [OUTPUT/9809_Sunday_June_19_2022_09_26_00_PM_50643366/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2 Equations Containing Power Functions. page 213
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime }-\left (a \,x^{2}+b \right ) y=0} \]

26.4.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} x^{2} y^{\prime \prime }+\left (-a \,x^{4}-b \,x^{2}\right ) y = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= {\frac {1}{2}}\\ \beta &= 2\\ n &= -1\\ \gamma &= {\frac {1}{2}} \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = -c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (1, 2 \sqrt {x}\right )-c_{2} \sqrt {x}\, \operatorname {BesselY}\left (1, 2 \sqrt {x}\right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (1, 2 \sqrt {x}\right )-c_{2} \sqrt {x}\, \operatorname {BesselY}\left (1, 2 \sqrt {x}\right ) \\ \end{align*}

Verification of solutions

\[ y = -c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (1, 2 \sqrt {x}\right )-c_{2} \sqrt {x}\, \operatorname {BesselY}\left (1, 2 \sqrt {x}\right ) \] Verified OK.

26.4.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\left (-a \,x^{2}-b \right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =\max \left (0, -m \right )}{\sum }}a_{k} x^{k +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =\max \left (0, -m \right )+m}{\sum }}a_{k -m} x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k} k \left (k -1\right ) x^{k -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +2} \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -a_{0} b +2 a_{2}+\left (6 a_{3}-a_{1} b \right ) x +\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k +2} \left (k +2\right ) \left (k +1\right )-a_{k} b -a_{k -2} a \right ) x^{k}\right )=0 \\ \bullet & {} & \textrm {The coefficients of each power of}\hspace {3pt} x \hspace {3pt}\textrm {must be 0}\hspace {3pt} \\ {} & {} & \left [2 a_{2}-a_{0} b =0, 6 a_{3}-a_{1} b =0\right ] \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & \left \{a_{2}=\frac {a_{0} b}{2}, a_{3}=\frac {a_{1} b}{6}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k^{2}+3 k +2\right ) a_{k +2}-a_{k -2} a -a_{k} b =0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \left (\left (k +2\right )^{2}+3 k +8\right ) a_{k +4}-a_{k} a -a_{k +2} b =0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +4}=\frac {a_{k} a +a_{k +2} b}{k^{2}+7 k +12}, a_{2}=\frac {a_{0} b}{2}, a_{3}=\frac {a_{1} b}{6}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Whittaker 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      <- hyper3 successful: received ODE is equivalent to the 1F1 ODE 
   <- Whittaker successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.094 (sec). Leaf size: 43

dsolve(diff(y(x),x$2)-(a*x^2+b)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{1} \operatorname {WhittakerM}\left (-\frac {b}{4 \sqrt {a}}, \frac {1}{4}, \sqrt {a}\, x^{2}\right )+c_{2} \operatorname {WhittakerW}\left (-\frac {b}{4 \sqrt {a}}, \frac {1}{4}, \sqrt {a}\, x^{2}\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 68

DSolve[y''[x]-(a*x^2+b)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_1 \operatorname {ParabolicCylinderD}\left (-\frac {b}{2 \sqrt {a}}-\frac {1}{2},\sqrt {2} \sqrt [4]{a} x\right )+c_2 \operatorname {ParabolicCylinderD}\left (\frac {1}{2} \left (\frac {b}{\sqrt {a}}-1\right ),i \sqrt {2} \sqrt [4]{a} x\right ) \]