27.8 problem 18

27.8.1 Maple step by step solution

Internal problem ID [10841]
Internal file name [OUTPUT/9823_Sunday_June_19_2022_09_26_19_PM_9788249/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y''+f(x)y'+g(x)y=0\)
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime \prime }+y^{\prime } x +\left (n -1\right ) y=0} \]

27.8.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+y^{\prime } x +\left (n -1\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} k \,x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k} k \left (k -1\right ) x^{k -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +2} \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & {} & \moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +2} \left (k +2\right ) \left (k +1\right )+a_{k} \left (k +n -1\right )\right ) x^{k}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k^{2}+3 k +2\right ) a_{k +2}+a_{k} \left (k +n -1\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +2}=-\frac {a_{k} \left (k +n -1\right )}{k^{2}+3 k +2}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      <- hyper3 successful: received ODE is equivalent to the 1F1 ODE 
   <- Kummer successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.062 (sec). Leaf size: 104

dsolve(diff(y(x),x$2)+x*diff(y(x),x)+(n-1)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {\left (-2 \left (-\frac {x^{2}}{2}+n +\frac {1}{2}\right ) c_{1} n \operatorname {KummerM}\left (-\frac {n}{2}+\frac {1}{2}, \frac {3}{2}, \frac {x^{2}}{2}\right )+2 \left (-x^{2}+2 n +1\right ) c_{2} \operatorname {KummerU}\left (-\frac {n}{2}+\frac {1}{2}, \frac {3}{2}, \frac {x^{2}}{2}\right )+n c_{1} \left (n +2\right ) \operatorname {KummerM}\left (-\frac {n}{2}-\frac {1}{2}, \frac {3}{2}, \frac {x^{2}}{2}\right )+4 \operatorname {KummerU}\left (-\frac {n}{2}-\frac {1}{2}, \frac {3}{2}, \frac {x^{2}}{2}\right ) c_{2} \right ) x \,{\mathrm e}^{-\frac {x^{2}}{2}}}{n \left (n -1\right )} \]

Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 51

DSolve[y''[x]+x*y'[x]+(n-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to e^{-\frac {x^2}{2}} \left (c_1 \operatorname {HermiteH}\left (n-2,\frac {x}{\sqrt {2}}\right )+c_2 \operatorname {Hypergeometric1F1}\left (1-\frac {n}{2},\frac {1}{2},\frac {x^2}{2}\right )\right ) \]