27.47 problem 57

27.47.1 Solving as second order ode lagrange adjoint equation method ode

Internal problem ID [10880]
Internal file name [OUTPUT/10137_Sunday_December_24_2023_05_14_34_PM_28021992/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y''+f(x)y'+g(x)y=0\)
Problem number: 57.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y=0} \]

27.47.1 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode \begin {align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\frac {\left (b \left (m +1\right ) x^{m}+a \,x^{n} \left (n +1\right )\right ) y}{x} = 0 \tag {1} \end {align*}

Becomes \begin {align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=r \left (x \right ) \tag {2} \end {align*}

Where \begin {align*} p \left (x \right )&=a \,x^{n}+b \,x^{m}\\ q \left (x \right )&=\frac {b \left (m +1\right ) x^{m}+a \,x^{n} \left (n +1\right )}{x}\\ r \left (x \right )&=0 \end {align*}

The Lagrange adjoint ode is given by \begin {align*} \xi ^{''}-(\xi \, p)'+\xi q &= 0\\ \xi ^{''}-\left (\left (a \,x^{n}+b \,x^{m}\right ) \xi \left (x \right )\right )' + \left (\frac {\left (b \left (m +1\right ) x^{m}+a \,x^{n} \left (n +1\right )\right ) \xi \left (x \right )}{x}\right ) &= 0\\ \xi ^{\prime \prime }\left (x \right )+\left (-a \,x^{n}-b \,x^{m}\right ) \xi ^{\prime }\left (x \right )+\left (-\frac {x^{n} a n}{x}-\frac {x^{m} b m}{x}+\frac {b \left (m +1\right ) x^{m}+a \,x^{n} \left (n +1\right )}{x}\right ) \xi \left (x \right )&= 0 \end {align*}

Which is solved for \(\xi (x)\). In normal form the ode \begin {align*} -\xi ^{\prime \prime }\left (x \right ) x +\left (a \,x^{n}+b \,x^{m}\right ) \xi ^{\prime }\left (x \right ) x +\left (-a \,x^{n}-b \,x^{m}\right ) \xi \left (x \right )&=0 \tag {1} \end {align*}

Becomes \begin {align*} \xi ^{\prime \prime }\left (x \right )+p \left (x \right ) \xi ^{\prime }\left (x \right )+q \left (x \right ) \xi \left (x \right )&=0 \tag {2} \end {align*}

Where \begin {align*} p \left (x \right )&=-a \,x^{n}-b \,x^{m}\\ q \left (x \right )&=\frac {a \,x^{n}+b \,x^{m}}{x} \end {align*}

Applying change of variables on the depndent variable \(\xi \left (x \right ) = v \left (x \right ) x^{n}\) to (2) gives the following ode where the dependent variables is \(v \left (x \right )\) and not \(\xi \left (x \right )\). \begin {align*} v^{\prime \prime }\left (x \right )+\left (\frac {2 n}{x}+p \right ) v^{\prime }\left (x \right )+\left (\frac {n \left (n -1\right )}{x^{2}}+\frac {n p}{x}+q \right ) v \left (x \right )&=0 \tag {3} \end {align*}

Let the coefficient of \(v \left (x \right )\) above be zero. Hence \begin {align*} \frac {n \left (n -1\right )}{x^{2}}+\frac {n p}{x}+q&=0 \tag {4} \end {align*}

Substituting the earlier values found for \(p \left (x \right )\) and \(q \left (x \right )\) into (4) gives \begin {align*} \frac {n \left (n -1\right )}{x^{2}}+\frac {n \left (-a \,x^{n}-b \,x^{m}\right )}{x}+\frac {a \,x^{n}+b \,x^{m}}{x}&=0 \tag {5} \end {align*}

Solving (5) for \(n\) gives \begin {align*} n&=1 \tag {6} \end {align*}

Substituting this value in (3) gives \begin {align*} v^{\prime \prime }\left (x \right )+\left (\frac {2}{x}-a \,x^{n}-b \,x^{m}\right ) v^{\prime }\left (x \right )&=0 \\ v^{\prime \prime }\left (x \right )+\left (\frac {2}{x}-a \,x^{n}-b \,x^{m}\right ) v^{\prime }\left (x \right )&=0 \tag {7} \\ \end {align*}

Using the substitution \begin {align*} u \left (x \right ) = v^{\prime }\left (x \right ) \end {align*}

Then (7) becomes \begin {align*} u^{\prime }\left (x \right )+\left (\frac {2}{x}-a \,x^{n}-b \,x^{m}\right ) u \left (x \right ) = 0 \tag {8} \\ \end {align*}

The above is now solved for \(u \left (x \right )\). In canonical form the ODE is \begin {align*} u' &= F(x,u)\\ &= f( x) g(u)\\ &= \frac {u \left (x^{m} x b +x^{n} a x -2\right )}{x} \end {align*}

Where \(f(x)=\frac {x^{m} x b +x^{n} a x -2}{x}\) and \(g(u)=u\). Integrating both sides gives \begin {align*} \frac {1}{u} \,du &= \frac {x^{m} x b +x^{n} a x -2}{x} \,d x\\ \int { \frac {1}{u} \,du} &= \int {\frac {x^{m} x b +x^{n} a x -2}{x} \,d x}\\ \ln \left (u \right )&=-2 \ln \left (x \right )+\frac {a x \,{\mathrm e}^{n \ln \left (x \right )}}{n +1}+\frac {b x \,{\mathrm e}^{m \ln \left (x \right )}}{m +1}+c_{1}\\ u&={\mathrm e}^{-2 \ln \left (x \right )+\frac {a x \,{\mathrm e}^{n \ln \left (x \right )}}{n +1}+\frac {b x \,{\mathrm e}^{m \ln \left (x \right )}}{m +1}+c_{1}}\\ &=c_{1} {\mathrm e}^{-2 \ln \left (x \right )+\frac {a x \,{\mathrm e}^{n \ln \left (x \right )}}{n +1}+\frac {b x \,{\mathrm e}^{m \ln \left (x \right )}}{m +1}} \end {align*}

Which simplifies to \[ u \left (x \right ) = \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}} \] Now that \(u \left (x \right )\) is known, then \begin {align*} v^{\prime }\left (x \right )&= u \left (x \right )\\ v \left (x \right )&= \int u \left (x \right )d x +c_{2}\\ &= \int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \end {align*}

Hence \begin {align*} \xi \left (x \right )&= v \left (x \right ) x^{n}\\ &= \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right ) x\\ &= \left (c_{1} \left (\int \frac {{\mathrm e}^{\frac {\left (a \,x^{n} \left (m +1\right )+b \,x^{m} \left (n +1\right )\right ) x}{\left (n +1\right ) \left (m +1\right )}}}{x^{2}}d x \right )+c_{2} \right ) x\\ \end {align*}

The original ode (2) now reduces to first order ode \begin {align*} \xi \left (x \right ) y^{\prime }-y \xi ^{\prime }\left (x \right )+\xi \left (x \right ) p \left (x \right ) y&=\int \xi \left (x \right ) r \left (x \right )d x\\ y^{\prime }+y \left (p \left (x \right )-\frac {\xi ^{\prime }\left (x \right )}{\xi \left (x \right )}\right )&=\frac {\int \xi \left (x \right ) r \left (x \right )d x}{\xi \left (x \right )}\\ y^{\prime }+y \left (a \,x^{n}+b \,x^{m}-\frac {\frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x}+\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2}}{\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right ) x}\right )&=0 \end {align*}

Which is now a first order ode. This is now solved for \(y\). In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= -\frac {y \left (a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x \right )}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )} \end {align*}

Where \(f(x)=-\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )}\) and \(g(y)=y\). Integrating both sides gives \begin {align*} \frac {1}{y} \,dy &= -\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )} \,d x\\ \int { \frac {1}{y} \,dy} &= \int {-\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )} \,d x}\\ \ln \left (y \right )&=\int -\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )}d x +c_{3}\\ y&={\mathrm e}^{\int -\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )}d x +c_{3}}\\ &=c_{3} {\mathrm e}^{\int -\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )}d x} \end {align*}

Hence, the solution found using Lagrange adjoint equation method is \[ y = c_{3} {\mathrm e}^{\int -\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )}d x} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{3} {\mathrm e}^{\int -\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )}d x} \\ \end{align*}

Verification of solutions

\[ y = c_{3} {\mathrm e}^{\int -\frac {a \,x^{n} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+a \,x^{n} x^{2} c_{2} +b \,x^{m} x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right )+b \,x^{m} x^{2} c_{2} -c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}-\left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x \right ) x -c_{2} x}{x^{2} \left (\int \frac {c_{1} {\mathrm e}^{\frac {a \,x^{n} x}{n +1}} {\mathrm e}^{\frac {b \,x^{m} x}{m +1}}}{x^{2}}d x +c_{2} \right )}d x} \] Verified OK.

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying an equivalence, under non-integer power transformations, 
   to LODEs admitting Liouvillian solutions. 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
   -> hypergeometric 
      -> heuristic approach 
      -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
   -> Mathieu 
      -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
-> Trying changes of variables to rationalize or make the ODE simpler 
<- unable to find a useful change of variables 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   trying 2nd order exact linear 
   trying symmetries linear in x and y(x) 
   trying to convert to a linear ODE with constant coefficients 
   trying 2nd order, integrating factor of the form mu(x,y) 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   <- linear_1 successful 
   <- 2nd order, integrating factors of the form mu(x,y) successful`
 

Solution by Maple

Time used: 0.313 (sec). Leaf size: 77

dsolve(diff(y(x),x$2)+(a*x^n+b*x^m)*diff(y(x),x)+(a*(n+1)*x^(n-1)+b*(m+1)*x^(m-1))*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = x \left (c_{1} +\left (\int \frac {{\mathrm e}^{\frac {\left (b \left (n +1\right ) x^{m}+a \left (1+m \right ) x^{n}\right ) x}{\left (1+m \right ) \left (n +1\right )}}}{x^{2}}d x \right ) c_{2} \right ) {\mathrm e}^{-\frac {\left (b \left (n +1\right ) x^{m}+a \left (1+m \right ) x^{n}\right ) x}{\left (1+m \right ) \left (n +1\right )}} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y''[x]+(a*x^n+b*x^m)*y'[x]+(a*(n+1)*x^(n-1)+b*(m+1)*x^(m-1))*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved