29.4 problem 113

29.4.1 Solving as second order bessel ode ode
29.4.2 Maple step by step solution

Internal problem ID [10936]
Internal file name [OUTPUT/10193_Sunday_December_31_2023_11_03_54_AM_32349464/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^2 y''+f(x)y'+g(x)y=0\)
Problem number: 113.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+n \left (n +1\right )\right ) y=0} \]

29.4.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} x^{2} y^{\prime \prime }+\left (-a^{2} x^{2}-n^{2}-n \right ) y = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= {\frac {1}{2}}\\ \beta &= i a\\ n &= -n -\frac {1}{2}\\ \gamma &= 1 \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (-n -\frac {1}{2}, i a x \right )+c_{2} \sqrt {x}\, \operatorname {BesselY}\left (-n -\frac {1}{2}, i a x \right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (-n -\frac {1}{2}, i a x \right )+c_{2} \sqrt {x}\, \operatorname {BesselY}\left (-n -\frac {1}{2}, i a x \right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \sqrt {x}\, \operatorname {BesselJ}\left (-n -\frac {1}{2}, i a x \right )+c_{2} \sqrt {x}\, \operatorname {BesselY}\left (-n -\frac {1}{2}, i a x \right ) \] Verified OK.

29.4.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (-a^{2} x^{2}-n^{2}-n \right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {\left (a^{2} x^{2}+n^{2}+n \right ) y}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }-\frac {\left (a^{2} x^{2}+n^{2}+n \right ) y}{x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=0, P_{3}\left (x \right )=-\frac {a^{2} x^{2}+n^{2}+n}{x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-n^{2}-n \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+\left (-a^{2} x^{2}-n^{2}-n \right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (r +n \right ) \left (r -1-n \right ) x^{r}+a_{1} \left (r +n +1\right ) \left (r -n \right ) x^{1+r}+\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k} \left (r +n +k \right ) \left (r -1-n +k \right )-a_{k -2} a^{2}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (r +n \right ) \left (r -1-n \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{-n , n +1\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (r +n +1\right ) \left (r -n \right )=0 \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & a_{1}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (r +n +k \right ) \left (r -1-n +k \right )-a_{k -2} a^{2}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & a_{k +2} \left (r +n +k +2\right ) \left (r +1-n +k \right )-a_{k} a^{2}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=\frac {a_{k} a^{2}}{\left (r +n +k +2\right ) \left (r +1-n +k \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-n \\ {} & {} & a_{k +2}=\frac {a_{k} a^{2}}{\left (k +2\right ) \left (-2 n +1+k \right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-n \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -n}, a_{k +2}=\frac {a_{k} a^{2}}{\left (k +2\right ) \left (-2 n +1+k \right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =n +1 \\ {} & {} & a_{k +2}=\frac {a_{k} a^{2}}{\left (2 n +3+k \right ) \left (k +2\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =n +1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +n +1}, a_{k +2}=\frac {a_{k} a^{2}}{\left (2 n +3+k \right ) \left (k +2\right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k -n}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}c_{k} x^{k +n +1}\right ), b_{k +2}=\frac {b_{k} a^{2}}{\left (k +2\right ) \left (-2 n +1+k \right )}, b_{1}=0, c_{k +2}=\frac {c_{k} a^{2}}{\left (2 n +3+k \right ) \left (k +2\right )}, c_{1}=0\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(x^2*diff(y(x),x$2)-(a^2*x^2+n*(n+1))*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \sqrt {x}\, \left (\operatorname {BesselJ}\left (n +\frac {1}{2}, \sqrt {-a^{2}}\, x \right ) c_{1} +\operatorname {BesselY}\left (n +\frac {1}{2}, \sqrt {-a^{2}}\, x \right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 42

DSolve[x^2*y''[x]-(a^2*x^2+n*(n+1))*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \sqrt {x} \left (c_1 \operatorname {BesselJ}\left (n+\frac {1}{2},-i a x\right )+c_2 \operatorname {BesselY}\left (n+\frac {1}{2},-i a x\right )\right ) \]