29.27 problem 136

Internal problem ID [10959]
Internal file name [OUTPUT/10216_Sunday_December_31_2023_11_10_06_AM_94347684/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-4 Equation of form \(x^2 y''+f(x)y'+g(x)y=0\)
Problem number: 136.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y=0} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
   Solution has integrals. Trying a special function solution free of integrals... 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      -> Kummer 
         -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      -> hypergeometric 
         -> heuristic approach 
         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
      -> Mathieu 
         -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      <- Heun successful: received ODE is equivalent to the  HeunD  ODE, case  c = 0 
   <- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.485 (sec). Leaf size: 243

dsolve(x^2*diff(y(x),x$2)+(a*x^2+b)*diff(y(x),x)+c*((a-c)*x^2+b)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \sqrt {x}\, \left (\operatorname {HeunD}\left (-4 \sqrt {-b \left (-2 c +a \right )}, -4 \sqrt {-b \left (-2 c +a \right )}-1+\left (-4 a +8 c \right ) b , 8 \sqrt {-b \left (-2 c +a \right )}, -4 \sqrt {-b \left (-2 c +a \right )}+1+\left (-8 c +4 a \right ) b , \frac {\sqrt {-b \left (-2 c +a \right )}\, x -b}{\sqrt {-b \left (-2 c +a \right )}\, x +b}\right ) {\mathrm e}^{-x \left (a -c \right )} c_{2} +\operatorname {HeunD}\left (4 \sqrt {-b \left (-2 c +a \right )}, -4 \sqrt {-b \left (-2 c +a \right )}-1+\left (-4 a +8 c \right ) b , 8 \sqrt {-b \left (-2 c +a \right )}, -4 \sqrt {-b \left (-2 c +a \right )}+1+\left (-8 c +4 a \right ) b , \frac {\sqrt {-b \left (-2 c +a \right )}\, x -b}{\sqrt {-b \left (-2 c +a \right )}\, x +b}\right ) {\mathrm e}^{\frac {-c \,x^{2}+b}{x}} c_{1} \right ) \]

Solution by Mathematica

Time used: 1.026 (sec). Leaf size: 44

DSolve[x^2*y''[x]+(a*x^2+b)*y'[x]+c*((a-c)*x^2+b)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to e^{-c x} \left (c_2 \int _1^xe^{\frac {b}{K[1]}-a K[1]+2 c K[1]}dK[1]+c_1\right ) \]