30.23 problem 171

30.23.1 Maple step by step solution

Internal problem ID [10994]
Internal file name [OUTPUT/10251_Sunday_December_31_2023_11_24_12_AM_56588853/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-5 Equation of form \((a x^2+b x+c) y''+f(x)y'+g(x)y=0\)
Problem number: 171.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[_Jacobi]

Unable to solve or complete the solution.

\[ \boxed {x \left (x -1\right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y=0} \]

30.23.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x^{2}-x \right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {\alpha \beta y}{x \left (x -1\right )}-\frac {\left (x \alpha +x \beta -\gamma +x \right ) y^{\prime }}{x \left (x -1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {\left (x \alpha +x \beta -\gamma +x \right ) y^{\prime }}{x \left (x -1\right )}+\frac {\alpha \beta y}{x \left (x -1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {x \alpha +x \beta -\gamma +x}{x \left (x -1\right )}, P_{3}\left (x \right )=\frac {\alpha \beta }{x \left (x -1\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\gamma \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x \left (x -1\right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (x \alpha +x \beta -\gamma +x \right ) y^{\prime }+\alpha \beta y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -a_{0} r \left (-1+r +\gamma \right ) x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (-a_{k +1} \left (k +1+r \right ) \left (k +r +\gamma \right )+a_{k} \left (\beta +k +r \right ) \left (\alpha +k +r \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & -r \left (-1+r +\gamma \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, -\gamma +1\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & -a_{k +1} \left (k +1+r \right ) \left (k +r +\gamma \right )+a_{k} \left (\beta +k +r \right ) \left (\alpha +k +r \right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {a_{k} \left (\beta +k +r \right ) \left (\alpha +k +r \right )}{\left (k +1+r \right ) \left (k +r +\gamma \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {a_{k} \left (\beta +k \right ) \left (\alpha +k \right )}{\left (k +1\right ) \left (k +\gamma \right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=\frac {a_{k} \left (\beta +k \right ) \left (\alpha +k \right )}{\left (k +1\right ) \left (k +\gamma \right )}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-\gamma +1 \\ {} & {} & a_{k +1}=\frac {a_{k} \left (\beta +k -\gamma +1\right ) \left (\alpha +k -\gamma +1\right )}{\left (k +2-\gamma \right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-\gamma +1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -\gamma +1}, a_{k +1}=\frac {a_{k} \left (\beta +k -\gamma +1\right ) \left (\alpha +k -\gamma +1\right )}{\left (k +2-\gamma \right ) \left (k +1\right )}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k -\gamma +1}\right ), a_{k +1}=\frac {a_{k} \left (\beta +k \right ) \left (\alpha +k \right )}{\left (k +1\right ) \left (k +\gamma \right )}, b_{k +1}=\frac {b_{k} \left (\beta +k -\gamma +1\right ) \left (\alpha +k -\gamma +1\right )}{\left (k +2-\gamma \right ) \left (k +1\right )}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
   -> hypergeometric 
      -> heuristic approach 
      <- heuristic approach successful 
   <- hypergeometric successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.125 (sec). Leaf size: 44

dsolve(x*(x-1)*diff(y(x),x$2)+((alpha+beta+1)*x-gamma)*diff(y(x),x)+alpha*beta*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} \operatorname {hypergeom}\left (\left [\alpha , \beta \right ], \left [\gamma \right ], x\right )+c_{2} x^{1-\gamma } \operatorname {hypergeom}\left (\left [\beta +1-\gamma , \alpha +1-\gamma \right ], \left [2-\gamma \right ], x\right ) \]

Solution by Mathematica

Time used: 0.281 (sec). Leaf size: 49

DSolve[x*(x-1)*y''[x]+((\[Alpha]+\[Beta]+1)*x-\[Gamma])*y'[x]+\[Alpha]*\[Beta]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_1 \operatorname {Hypergeometric2F1}(\alpha ,\beta ,\gamma ,x)-(-1)^{-\gamma } c_2 x^{1-\gamma } \operatorname {Hypergeometric2F1}(\alpha -\gamma +1,\beta -\gamma +1,2-\gamma ,x) \]