3.10 problem 10

3.10.1 Solving as riccati ode
3.10.2 Maple step by step solution

Internal problem ID [10417]
Internal file name [OUTPUT/9365_Monday_June_06_2022_02_19_01_PM_15885292/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {y^{\prime }-b \,{\mathrm e}^{\mu x} y^{2}=a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x}} \]

3.10.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= b \,{\mathrm e}^{\mu x} y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = b \,{\mathrm e}^{\mu x} y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{2 \lambda x} {\mathrm e}^{\mu x} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x}\), \(f_1(x)=0\) and \(f_2(x)=b \,{\mathrm e}^{\mu x}\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{b \,{\mathrm e}^{\mu x} u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=b \mu \,{\mathrm e}^{\mu x}\\ f_1 f_2 &=0\\ f_2^2 f_0 &=b^{2} {\mathrm e}^{2 \mu x} \left (a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x}\right ) \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} b \,{\mathrm e}^{\mu x} u^{\prime \prime }\left (x \right )-b \mu \,{\mathrm e}^{\mu x} u^{\prime }\left (x \right )+b^{2} {\mathrm e}^{2 \mu x} \left (a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x}\right ) u \left (x \right ) &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = \operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] The above shows that \[ u^{\prime }\left (x \right ) = \frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] Using the above in (1) gives the solution \[ y = -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) {\mathrm e}^{-\mu x}}{b \operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) {\mathrm e}^{-\mu x}}{b \operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) {\mathrm e}^{-\mu x}}{b \operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \\ \end{align*}

Verification of solutions

\[ y = -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) {\mathrm e}^{-\mu x}}{b \operatorname {DESol}\left (\left \{-{\mathrm e}^{2 x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a^{2} b^{2}+{\mathrm e}^{x \left (\lambda +\mu \right )} \textit {\_Y} \left (x \right ) a b \lambda -\mu \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Verified OK.

3.10.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-b \,{\mathrm e}^{\mu x} y^{2}=a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=b \,{\mathrm e}^{\mu x} y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati_symmetries 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = mu*(diff(y(x), x))-b*exp(x*mu)*a*(-exp(2*lambda*x+mu*x)*a*b+lambda*exp 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      -> Trying changes of variables to rationalize or make the ODE simpler 
      <- unable to find a useful change of variables 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying 2nd order, integrating factor of the form mu(x,y) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         -> Trying changes of variables to rationalize or make the ODE simpler 
         <- unable to find a useful change of variables 
            trying a symmetry of the form [xi=0, eta=F(x)] 
         trying to convert to an ODE of Bessel type 
   -> Trying a change of variables to reduce to Bernoulli 
   -> Calling odsolve with the ODE`, diff(y(x), x)-(b*exp(x*mu)*y(x)^2+y(x)+x^2*(a*lambda*exp(lambda*x)-a^2*b*exp(2*lambda*x+mu*x))) 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      trying Bernoulli 
      trying separable 
      trying inverse linear 
      trying homogeneous types: 
      trying Chini 
      differential order: 1; looking for linear symmetries 
      trying exact 
      Looking for potential symmetries 
      trying Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
      trying inverse_Riccati 
      trying 1st order ODE linearizable_by_differentiation 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
trying inverse_Riccati 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
`, `-> Computing symmetries using: way = 6`
 

Solution by Maple

dsolve(diff(y(x),x)=b*exp(mu*x)*y(x)^2+a*lambda*exp(lambda*x)-a^2*b*exp((mu+2*lambda)*x),y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 8.808 (sec). Leaf size: 844

DSolve[y'[x]==b*Exp[\[Mu]*x]*y[x]^2+a*\[Lambda]*Exp[\[Lambda]*x]-a^2*b*Exp[(\[Mu]+2*\[Lambda])*x],y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to \frac {e^{\mu (-x)} \left (-2 a b \log \left (e^{\lambda +\mu }\right ) \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \left (2 (\lambda +\mu ) L_{-\frac {\log \left (e^{\lambda +\mu }\right )}{2 (\lambda +\mu )}-\frac {3}{2}}^{\frac {\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}+1}\left (-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )+c_1 \left (\log \left (e^{\lambda +\mu }\right )+\lambda +\mu \right ) \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {\log \left (e^{\lambda +\mu }\right )}{\lambda +\mu }+3\right ),\frac {2 (\lambda +\mu )^2+\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2},-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )\right )-c_1 (\lambda +\mu ) \left (\log \left (e^{\lambda +\mu }\right ) \left (2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}}+\mu \right )+\mu (\lambda +\mu )\right ) \operatorname {HypergeometricU}\left (\frac {\lambda +\mu +\log \left (e^{\lambda +\mu }\right )}{2 (\lambda +\mu )},\frac {\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}+1,-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )-(\lambda +\mu ) \left (\log \left (e^{\lambda +\mu }\right ) \left (2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}}+\mu \right )+\mu (\lambda +\mu )\right ) L_{-\frac {\lambda +\mu +\log \left (e^{\lambda +\mu }\right )}{2 (\lambda +\mu )}}^{\frac {\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}}\left (-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )\right )}{2 b (\lambda +\mu )^2 \left (L_{-\frac {\lambda +\mu +\log \left (e^{\lambda +\mu }\right )}{2 (\lambda +\mu )}}^{\frac {\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}}\left (-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )+c_1 \operatorname {HypergeometricU}\left (\frac {\lambda +\mu +\log \left (e^{\lambda +\mu }\right )}{2 (\lambda +\mu )},\frac {\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}+1,-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )\right )} \\ y(x)\to -\frac {a e^{\mu (-x)} \log \left (e^{\lambda +\mu }\right ) \left (\log \left (e^{\lambda +\mu }\right )+\lambda +\mu \right ) \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {\log \left (e^{\lambda +\mu }\right )}{\lambda +\mu }+3\right ),\frac {2 (\lambda +\mu )^2+\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2},-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )}{(\lambda +\mu )^2 \operatorname {HypergeometricU}\left (\frac {\lambda +\mu +\log \left (e^{\lambda +\mu }\right )}{2 (\lambda +\mu )},\frac {\mu \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}+1,-\frac {2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}} \log \left (e^{\lambda +\mu }\right )}{(\lambda +\mu )^2}\right )}-\frac {e^{\mu (-x)} \left (\log \left (e^{\lambda +\mu }\right ) \left (2 a b \left (\left (e^{\lambda +\mu }\right )^x\right )^{\frac {\lambda +\mu }{\log \left (e^{\lambda +\mu }\right )}}+\mu \right )+\mu (\lambda +\mu )\right )}{2 b (\lambda +\mu )} \\ \end{align*}