3.31 problem 25

3.31.1 Existence and uniqueness analysis
3.31.2 Solving as quadrature ode
3.31.3 Maple step by step solution

Internal problem ID [14154]
Internal file name [OUTPUT/13835_Saturday_March_02_2024_02_51_12_PM_90153216/index.tex]

Book: INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section: Chapter 2. First Order Equations. Exercises 2.1, page 32
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y^{\prime }-y^{2}=0} \] With initial conditions \begin {align*} \left [y \left (0\right ) = {\frac {1}{2}}\right ] \end {align*}

3.31.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as \begin {align*} y^{\prime } &= f(t,y)\\ &= y^{2} \end {align*}

The \(y\) domain of \(f(t,y)\) when \(t=0\) is \[ \{-\infty

The \(y\) domain of \(\frac {\partial f}{\partial y}\) when \(t=0\) is \[ \{-\infty

3.31.2 Solving as quadrature ode

Integrating both sides gives \begin {align*} \int \frac {1}{y^{2}}d y &= \int {dt}\\ -\frac {1}{y}&= t +c_{1} \end {align*}

Initial conditions are used to solve for \(c_{1}\). Substituting \(t=0\) and \(y={\frac {1}{2}}\) in the above solution gives an equation to solve for the constant of integration. \begin {align*} -2 = c_{1} \end {align*}

The solutions are \begin {align*} c_{1} = -2 \end {align*}

Trying the constant \begin {align*} c_{1} = -2 \end {align*}

Substituting \(c_{1}\) found above in the general solution gives \begin {align*} -\frac {1}{y} = t -2 \end {align*}

The constant \(c_{1} = -2\) gives valid solution.

Summary

The solution(s) found are the following \begin{align*} \tag{1} -\frac {1}{y} &= t -2 \\ \end{align*}

Verification of solutions

\[ -\frac {1}{y} = t -2 \] Verified OK.

3.31.3 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }-y^{2}=0, y \left (0\right )=\frac {1}{2}\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=y^{2} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y^{2}}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{y^{2}}d t =\int 1d t +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{y}=t +c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=-\frac {1}{t +c_{1}} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=\frac {1}{2} \\ {} & {} & \frac {1}{2}=-\frac {1}{c_{1}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} c_{1} \\ {} & {} & c_{1} =-2 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} c_{1} =-2\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y=-\frac {1}{t -2} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=-\frac {1}{t -2} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
<- Bernoulli successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

dsolve([diff(y(t),t)=y(t)^2,y(0) = 1/2],y(t), singsol=all)
 

\[ y \left (t \right ) = -\frac {1}{t -2} \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 12

DSolve[{y'[t]==y[t]^2,{y[0]==1/2}},y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to \frac {1}{2-t} \]