6.12 problem 12

6.12.1 Solving as quadrature ode
6.12.2 Maple step by step solution

Internal problem ID [14299]
Internal file name [OUTPUT/13980_Saturday_March_09_2024_04_42_33_PM_51637518/index.tex]

Book: INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section: Chapter 2. First Order Equations. Exercises 2.4, page 57
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {3 y^{2} y^{\prime }=1} \]

6.12.1 Solving as quadrature ode

Integrating both sides gives \begin {align*} \int 3 y^{2}d y &= t +c_{1}\\ y^{3}&=t +c_{1} \end {align*}

Solving for \(y\) gives these solutions \begin {align*} y_1&=\left (t +c_{1} \right )^{\frac {1}{3}}\\ y_2&=-\frac {\left (t +c_{1} \right )^{\frac {1}{3}}}{2}-\frac {i \sqrt {3}\, \left (t +c_{1} \right )^{\frac {1}{3}}}{2}\\ y_3&=-\frac {\left (t +c_{1} \right )^{\frac {1}{3}}}{2}+\frac {i \sqrt {3}\, \left (t +c_{1} \right )^{\frac {1}{3}}}{2} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \left (t +c_{1} \right )^{\frac {1}{3}} \\ \tag{2} y &= -\frac {\left (t +c_{1} \right )^{\frac {1}{3}}}{2}-\frac {i \sqrt {3}\, \left (t +c_{1} \right )^{\frac {1}{3}}}{2} \\ \tag{3} y &= -\frac {\left (t +c_{1} \right )^{\frac {1}{3}}}{2}+\frac {i \sqrt {3}\, \left (t +c_{1} \right )^{\frac {1}{3}}}{2} \\ \end{align*}

Figure 400: Slope field plot

Verification of solutions

\[ y = \left (t +c_{1} \right )^{\frac {1}{3}} \] Verified OK.

\[ y = -\frac {\left (t +c_{1} \right )^{\frac {1}{3}}}{2}-\frac {i \sqrt {3}\, \left (t +c_{1} \right )^{\frac {1}{3}}}{2} \] Verified OK.

\[ y = -\frac {\left (t +c_{1} \right )^{\frac {1}{3}}}{2}+\frac {i \sqrt {3}\, \left (t +c_{1} \right )^{\frac {1}{3}}}{2} \] Verified OK.

6.12.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 3 y^{2} y^{\prime }=1 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & y^{2} y^{\prime }=\frac {1}{3} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int y^{2} y^{\prime }d t =\int \frac {1}{3}d t +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {y^{3}}{3}=\frac {t}{3}+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\left (3 c_{1} +t \right )^{\frac {1}{3}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
<- Bernoulli successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

dsolve(-1+3*y(t)^2*diff(y(t),t)=0,y(t), singsol=all)
 

\begin{align*} y \left (t \right ) &= \left (t +c_{1} \right )^{\frac {1}{3}} \\ y \left (t \right ) &= -\frac {\left (t +c_{1} \right )^{\frac {1}{3}} \left (1+i \sqrt {3}\right )}{2} \\ y \left (t \right ) &= \frac {\left (t +c_{1} \right )^{\frac {1}{3}} \left (i \sqrt {3}-1\right )}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 56

DSolve[-1+3*y[t]^2*y'[t]==0,y[t],t,IncludeSingularSolutions -> True]
 

\begin{align*} y(t)\to \sqrt [3]{t+3 c_1} \\ y(t)\to -\sqrt [3]{-1} \sqrt [3]{t+3 c_1} \\ y(t)\to (-1)^{2/3} \sqrt [3]{t+3 c_1} \\ \end{align*}