1.44 problem 51

1.44.1 Maple step by step solution

Internal problem ID [14087]
Internal file name [OUTPUT/13768_Saturday_March_02_2024_02_49_22_PM_5585912/index.tex]

Book: INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section: Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number: 51.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_3rd_order, _missing_x]]

\[ \boxed {y^{\prime \prime \prime }-2 y^{\prime \prime }=0} \] With initial conditions \begin {align*} [y \left (0\right ) = 0, y^{\prime }\left (0\right ) = 1, y^{\prime \prime }\left (0\right ) = 3] \end {align*}

The characteristic equation is \[ \lambda ^{3}-2 \lambda ^{2} = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= 2\\ \lambda _2 &= 0\\ \lambda _3 &= 0 \end {align*}

Therefore the homogeneous solution is \[ y_h(x)=c_{2} x +c_{1} +{\mathrm e}^{2 x} c_{3} \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} y_1 &= 1\\ y_2 &= x\\ y_3 &= {\mathrm e}^{2 x} \end {align*}

Initial conditions are used to solve for the constants of integration.

Looking at the above solution \begin {align*} y = c_{2} x +c_{1} +{\mathrm e}^{2 x} c_{3} \tag {1} \end {align*}

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y = 0\) and \(x = 0\) in the above gives \begin {align*} 0 = c_{1} +c_{3}\tag {1A} \end {align*}

Taking derivative of the solution gives \begin {align*} y^{\prime } = c_{2} +2 \,{\mathrm e}^{2 x} c_{3} \end {align*}

substituting \(y^{\prime } = 1\) and \(x = 0\) in the above gives \begin {align*} 1 = c_{2} +2 c_{3}\tag {2A} \end {align*}

Taking two derivatives of the solution gives \begin {align*} y^{\prime \prime } = 4 \,{\mathrm e}^{2 x} c_{3} \end {align*}

substituting \(y^{\prime \prime } = 3\) and \(x = 0\) in the above gives \begin {align*} 3 = 4 c_{3}\tag {3A} \end {align*}

Equations {1A,2A,3A} are now solved for \(\{c_{1}, c_{2}, c_{3}\}\). Solving for the constants gives \begin {align*} c_{1}&=-{\frac {3}{4}}\\ c_{2}&=-{\frac {1}{2}}\\ c_{3}&={\frac {3}{4}} \end {align*}

Substituting these values back in above solution results in \begin {align*} y = -\frac {3}{4}-\frac {x}{2}+\frac {3 \,{\mathrm e}^{2 x}}{4} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {3}{4}-\frac {x}{2}+\frac {3 \,{\mathrm e}^{2 x}}{4} \\ \end{align*}

Figure 55: Solution plot

Verification of solutions

\[ y = -\frac {3}{4}-\frac {x}{2}+\frac {3 \,{\mathrm e}^{2 x}}{4} \] Verified OK.

1.44.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y^{\prime \prime }-2 \frac {d}{d x}y^{\prime }=0, y \left (0\right )=0, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}0\right \}}}}=1, \left (\frac {d}{d x}y^{\prime }\right )\bigg | {\mstack {}{_{\left \{x \hiderel {=}0\right \}}}}=3\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d}{d x}y^{\prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (x \right ) \\ {} & {} & y_{1}\left (x \right )=y \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (x \right ) \\ {} & {} & y_{2}\left (x \right )=y^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (x \right ) \\ {} & {} & y_{3}\left (x \right )=\frac {d}{d x}y^{\prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} y_{3}^{\prime }\left (x \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & y_{3}^{\prime }\left (x \right )=2 y_{3}\left (x \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (x \right )=y_{1}^{\prime }\left (x \right ), y_{3}\left (x \right )=y_{2}^{\prime }\left (x \right ), y_{3}^{\prime }\left (x \right )=2 y_{3}\left (x \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{c} y_{1}\left (x \right ) \\ y_{2}\left (x \right ) \\ y_{3}\left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (x \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=A \cdot {\moverset {\rightarrow }{y}}\left (x \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ]\right ], \left [2, \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}=\left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [2, \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}={\mathrm e}^{2 x}\cdot \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}={\mathrm e}^{2 x} c_{3} \cdot \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]+\left [\begin {array}{c} c_{1} \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y=\frac {{\mathrm e}^{2 x} c_{3}}{4}+c_{1} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y \left (0\right )=0 \\ {} & {} & 0=\frac {c_{3}}{4}+c_{1} \\ \bullet & {} & \textrm {Calculate the 1st derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {{\mathrm e}^{2 x} c_{3}}{2} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}0\right \}}}}=1 \\ {} & {} & 1=\frac {c_{3}}{2} \\ \bullet & {} & \textrm {Calculate the 2nd derivative of the solution}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }={\mathrm e}^{2 x} c_{3} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} \left (\frac {d}{d x}y^{\prime }\right )\bigg | {\mstack {}{_{\left \{x \hiderel {=}0\right \}}}}=3 \\ {} & {} & 3=c_{3} \\ \bullet & {} & \textrm {Solve for the unknown coefficients}\hspace {3pt} \\ \bullet & {} & \textrm {The solution does not satisfy the initial conditions}\hspace {3pt} \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve([diff(y(x),x$3)-2*diff(y(x),x$2)=0,y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = 3],y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {3}{4}-\frac {x}{2}+\frac {3 \,{\mathrm e}^{2 x}}{4} \]

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 21

DSolve[{y'''[x]-2*y''[x]==0,{y[0]==0,y'[0]==1,y''[0]==3}},y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {1}{4} \left (-2 x+3 e^{2 x}-3\right ) \]