15.19 problem 19

Internal problem ID [14727]
Internal file name [OUTPUT/14407_Wednesday_April_03_2024_02_18_13_PM_26437462/index.tex]

Book: INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section: Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number: 19.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type

[[_3rd_order, _exact, _linear, _homogeneous]]

\[ \boxed {x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y=0} \] This is Euler ODE of higher order. Let \(y = x^{\lambda }\). Hence \begin {align*} y^{\prime } &= \lambda \,x^{\lambda -1}\\ y^{\prime \prime } &= \lambda \left (\lambda -1\right ) x^{\lambda -2}\\ y^{\prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3} \end {align*}

Substituting these back into \[ x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \] gives \[ 7 x \lambda \,x^{\lambda -1}+6 x^{2} \lambda \left (\lambda -1\right ) x^{\lambda -2}+x^{3} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}+x^{\lambda } = 0 \] Which simplifies to \[ 7 \lambda \,x^{\lambda }+6 \lambda \left (\lambda -1\right ) x^{\lambda }+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda }+x^{\lambda } = 0 \] And since \(x^{\lambda }\neq 0\) then dividing through by \(x^{\lambda }\), the above becomes

\[ 7 \lambda +6 \lambda \left (\lambda -1\right )+\lambda \left (\lambda -1\right ) \left (\lambda -2\right )+1 = 0 \] Simplifying gives the characteristic equation as \[ \left (\lambda +1\right )^{3} = 0 \] Solving the above gives the following roots \begin {align*} \lambda _1 &= -1\\ \lambda _2 &= -1\\ \lambda _3 &= -1 \end {align*}

This table summarises the result

root multiplicity type of root
\(-1\) \(3\) real root

The solution is generated by going over the above table. For each real root \(\lambda \) of multiplicity one generates a \(c_1x^{\lambda }\) basis solution. Each real root of multiplicty two, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) basis solutions. Each real root of multiplicty three, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) and \(c_3x^{\lambda } \ln \left (x \right )^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta \) of multiplicity one generates \(x^{\alpha } \left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity two generates \(\ln \left (x \right ) x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity three generates \(\ln \left (x \right )^{2} x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And so on. Using the above show that the solution is

\[ y = \frac {c_{1}}{x}+\frac {c_{2} \ln \left (x \right )}{x}+\frac {c_{3} \ln \left (x \right )^{2}}{x} \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} y_1 &= \frac {1}{x}\\ y_2 &= \frac {\ln \left (x \right )}{x}\\ y_3 &= \frac {\ln \left (x \right )^{2}}{x} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{1}}{x}+\frac {c_{2} \ln \left (x \right )}{x}+\frac {c_{3} \ln \left (x \right )^{2}}{x} \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{1}}{x}+\frac {c_{2} \ln \left (x \right )}{x}+\frac {c_{3} \ln \left (x \right )^{2}}{x} \] Verified OK.

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(x^3*diff(y(x),x$3)+6*x^2*diff(y(x),x$2)+7*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{1} +c_{2} \ln \left (x \right )+c_{3} \ln \left (x \right )^{2}}{x} \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 24

DSolve[x^3*y'''[x]+6*x^2*y''[x]+7*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {c_3 \log ^2(x)+c_2 \log (x)+c_1}{x} \]