15.63 problem 64 (c)

15.63.1 Solved as higher order Euler type ode
15.63.2 Maple step by step solution
15.63.3 Maple trace
15.63.4 Maple dsolve solution
15.63.5 Mathematica DSolve solution

Internal problem ID [15410]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 64 (c)
Date solved : Friday, October 18, 2024 at 01:36:43 PM
CAS classification : [[_high_order, _exact, _linear, _homogeneous]]

Solve

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y&=0 \end{align*}

15.63.1 Solved as higher order Euler type ode

Time used: 0.125 (sec)

This is Euler ODE of higher order. Let \(y = x^{\lambda }\). Hence

\begin{align*} y^{\prime } &= \lambda \,x^{\lambda -1}\\ y^{\prime \prime } &= \lambda \left (\lambda -1\right ) x^{\lambda -2}\\ y^{\prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}\\ y^{\prime \prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda -4} \end{align*}

Substituting these back into

\[ x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

gives

\[ 65 x \lambda \,x^{\lambda -1}+55 x^{2} \lambda \left (\lambda -1\right ) x^{\lambda -2}+14 x^{3} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}+x^{4} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda -4}+15 x^{\lambda } = 0 \]

Which simplifies to

\[ 65 \lambda \,x^{\lambda }+55 \lambda \left (\lambda -1\right ) x^{\lambda }+14 \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda }+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right ) x^{\lambda }+15 x^{\lambda } = 0 \]

And since \(x^{\lambda }\neq 0\) then dividing through by \(x^{\lambda }\), the above becomes

\[ 65 \lambda +55 \lambda \left (\lambda -1\right )+14 \lambda \left (\lambda -1\right ) \left (\lambda -2\right )+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) \left (\lambda -3\right )+15 = 0 \]

Simplifying gives the characteristic equation as

\[ \lambda ^{4}+8 \lambda ^{3}+24 \lambda ^{2}+32 \lambda +15 = 0 \]

Solving the above gives the following roots

\begin{align*} \lambda _1 &= -1\\ \lambda _2 &= -3\\ \lambda _3 &= -2+i\\ \lambda _4 &= -2-i \end{align*}

This table summarises the result

root multiplicity type of root
\(-1\) \(1\) real root
\(-3\) \(1\) real root
\(-2 \pm 1 i\) \(1\) complex conjugate root

The solution is generated by going over the above table. For each real root \(\lambda \) of multiplicity one generates a \(c_1x^{\lambda }\) basis solution. Each real root of multiplicty two, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) basis solutions. Each real root of multiplicty three, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) and \(c_3x^{\lambda } \ln \left (x \right )^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta \) of multiplicity one generates \(x^{\alpha } \left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity two generates \(\ln \left (x \right ) x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity three generates \(\ln \left (x \right )^{2} x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And so on. Using the above show that the solution is

\[ y = \frac {c_1}{x}+\frac {c_2}{x^{3}}+\frac {c_3 \cos \left (\ln \left (x \right )\right )+c_4 \sin \left (\ln \left (x \right )\right )}{x^{2}} \]

The fundamental set of solutions for the homogeneous solution are the following

\begin{align*} y_1 &= \frac {1}{x} \\ y_2 &= \frac {1}{x^{3}} \\ y_3 &= \frac {\cos \left (\ln \left (x \right )\right )}{x^{2}} \\ y_4 &= \frac {\sin \left (\ln \left (x \right )\right )}{x^{2}} \\ \end{align*}

15.63.2 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{4} \left (\frac {d^{4}}{d x^{4}}y \left (x \right )\right )+14 x^{3} \left (\frac {d^{3}}{d x^{3}}y \left (x \right )\right )+55 x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+65 x \left (\frac {d}{d x}y \left (x \right )\right )+15 y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 4 \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 4th derivative}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )=-\frac {15 y \left (x \right )}{x^{4}}-\frac {14 x^{2} \left (\frac {d^{3}}{d x^{3}}y \left (x \right )\right )+55 x \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+65 \frac {d}{d x}y \left (x \right )}{x^{3}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )+\frac {14 \left (\frac {d^{3}}{d x^{3}}y \left (x \right )\right )}{x}+\frac {55 \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )}{x^{2}}+\frac {65 \left (\frac {d}{d x}y \left (x \right )\right )}{x^{3}}+\frac {15 y \left (x \right )}{x^{4}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & x^{4} \left (\frac {d^{4}}{d x^{4}}y \left (x \right )\right )+14 x^{3} \left (\frac {d^{3}}{d x^{3}}y \left (x \right )\right )+55 x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+65 x \left (\frac {d}{d x}y \left (x \right )\right )+15 y \left (x \right )=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\left (\frac {d}{d t}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right )^{2}+\left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {3rd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right )=\left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right )^{3}+3 \left (\frac {d}{d x}t \left (x \right )\right ) \left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right ) \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+\left (\frac {d^{3}}{d x^{3}}t \left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right )=\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {4th}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )=\left (\frac {d^{4}}{d t^{4}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right )^{4}+3 \left (\frac {d}{d x}t \left (x \right )\right )^{2} \left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right ) \left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right )+3 \left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right )^{2} \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+3 \left (\left (\frac {d^{3}}{d x^{3}}t \left (x \right )\right ) \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+\left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right ) \left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right )\right ) \left (\frac {d}{d x}t \left (x \right )\right )+\left (\frac {d^{4}}{d x^{4}}t \left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right )+\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right ) \left (\frac {d^{3}}{d x^{3}}t \left (x \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d x^{4}}y \left (x \right )=\frac {\frac {d^{4}}{d t^{4}}y \left (t \right )}{x^{4}}-\frac {3 \left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right )}{x^{4}}+\frac {5 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{4}}+\frac {3 \left (\frac {2 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}-\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}\right )}{x}-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{4}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & x^{4} \left (\frac {\frac {d^{4}}{d t^{4}}y \left (t \right )}{x^{4}}-\frac {3 \left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right )}{x^{4}}+\frac {5 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{4}}+\frac {3 \left (\frac {2 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}-\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}\right )}{x}-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{4}}\right )+14 x^{3} \left (\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}}\right )+55 x^{2} \left (\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}\right )+65 \frac {d}{d t}y \left (t \right )+15 y \left (t \right )=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d t^{4}}y \left (t \right )+8 \frac {d^{3}}{d t^{3}}y \left (t \right )+24 \frac {d^{2}}{d t^{2}}y \left (t \right )+32 \frac {d}{d t}y \left (t \right )+15 y \left (t \right )=0 \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=\frac {d}{d t}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=\frac {d^{2}}{d t^{2}}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{4}\left (t \right ) \\ {} & {} & y_{4}\left (t \right )=\frac {d^{3}}{d t^{3}}y \left (t \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d t}y_{4}\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y_{4}\left (t \right )=-8 y_{4}\left (t \right )-24 y_{3}\left (t \right )-32 y_{2}\left (t \right )-15 y_{1}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=\frac {d}{d t}y_{1}\left (t \right ), y_{3}\left (t \right )=\frac {d}{d t}y_{2}\left (t \right ), y_{4}\left (t \right )=\frac {d}{d t}y_{3}\left (t \right ), \frac {d}{d t}y_{4}\left (t \right )=-8 y_{4}\left (t \right )-24 y_{3}\left (t \right )-32 y_{2}\left (t \right )-15 y_{1}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \\ y_{4}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -15 & -32 & -24 & -8 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -15 & -32 & -24 & -8 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-3, \left [\begin {array}{c} -\frac {1}{27} \\ \frac {1}{9} \\ -\frac {1}{3} \\ 1 \end {array}\right ]\right ], \left [-1, \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]\right ], \left [-2-\mathrm {I}, \left [\begin {array}{c} -\frac {2}{125}+\frac {11 \,\mathrm {I}}{125} \\ \frac {3}{25}-\frac {4 \,\mathrm {I}}{25} \\ -\frac {2}{5}+\frac {\mathrm {I}}{5} \\ 1 \end {array}\right ]\right ], \left [-2+\mathrm {I}, \left [\begin {array}{c} -\frac {2}{125}-\frac {11 \,\mathrm {I}}{125} \\ \frac {3}{25}+\frac {4 \,\mathrm {I}}{25} \\ -\frac {2}{5}-\frac {\mathrm {I}}{5} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-3, \left [\begin {array}{c} -\frac {1}{27} \\ \frac {1}{9} \\ -\frac {1}{3} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{-3 t}\cdot \left [\begin {array}{c} -\frac {1}{27} \\ \frac {1}{9} \\ -\frac {1}{3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-1, \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}={\mathrm e}^{-t}\cdot \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [-2-\mathrm {I}, \left [\begin {array}{c} -\frac {2}{125}+\frac {11 \,\mathrm {I}}{125} \\ \frac {3}{25}-\frac {4 \,\mathrm {I}}{25} \\ -\frac {2}{5}+\frac {\mathrm {I}}{5} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\left (-2-\mathrm {I}\right ) t}\cdot \left [\begin {array}{c} -\frac {2}{125}+\frac {11 \,\mathrm {I}}{125} \\ \frac {3}{25}-\frac {4 \,\mathrm {I}}{25} \\ -\frac {2}{5}+\frac {\mathrm {I}}{5} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & {\mathrm e}^{-2 t}\cdot \left (\cos \left (t \right )-\mathrm {I} \sin \left (t \right )\right )\cdot \left [\begin {array}{c} -\frac {2}{125}+\frac {11 \,\mathrm {I}}{125} \\ \frac {3}{25}-\frac {4 \,\mathrm {I}}{25} \\ -\frac {2}{5}+\frac {\mathrm {I}}{5} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & {\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} \left (-\frac {2}{125}+\frac {11 \,\mathrm {I}}{125}\right ) \left (\cos \left (t \right )-\mathrm {I} \sin \left (t \right )\right ) \\ \left (\frac {3}{25}-\frac {4 \,\mathrm {I}}{25}\right ) \left (\cos \left (t \right )-\mathrm {I} \sin \left (t \right )\right ) \\ \left (-\frac {2}{5}+\frac {\mathrm {I}}{5}\right ) \left (\cos \left (t \right )-\mathrm {I} \sin \left (t \right )\right ) \\ \cos \left (t \right )-\mathrm {I} \sin \left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{y}}_{3}\left (t \right )={\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} -\frac {2 \cos \left (t \right )}{125}+\frac {11 \sin \left (t \right )}{125} \\ \frac {3 \cos \left (t \right )}{25}-\frac {4 \sin \left (t \right )}{25} \\ -\frac {2 \cos \left (t \right )}{5}+\frac {\sin \left (t \right )}{5} \\ \cos \left (t \right ) \end {array}\right ], {\moverset {\rightarrow }{y}}_{4}\left (t \right )={\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} \frac {2 \sin \left (t \right )}{125}+\frac {11 \cos \left (t \right )}{125} \\ -\frac {3 \sin \left (t \right )}{25}-\frac {4 \cos \left (t \right )}{25} \\ \frac {2 \sin \left (t \right )}{5}+\frac {\cos \left (t \right )}{5} \\ -\sin \left (t \right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=\mathit {C1} {\moverset {\rightarrow }{y}}_{1}+\mathit {C2} {\moverset {\rightarrow }{y}}_{2}+\mathit {C3} {\moverset {\rightarrow }{y}}_{3}\left (t \right )+\mathit {C4} {\moverset {\rightarrow }{y}}_{4}\left (t \right ) \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=\mathit {C1} \,{\mathrm e}^{-3 t}\cdot \left [\begin {array}{c} -\frac {1}{27} \\ \frac {1}{9} \\ -\frac {1}{3} \\ 1 \end {array}\right ]+\mathit {C2} \,{\mathrm e}^{-t}\cdot \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]+\mathit {C3} \,{\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} -\frac {2 \cos \left (t \right )}{125}+\frac {11 \sin \left (t \right )}{125} \\ \frac {3 \cos \left (t \right )}{25}-\frac {4 \sin \left (t \right )}{25} \\ -\frac {2 \cos \left (t \right )}{5}+\frac {\sin \left (t \right )}{5} \\ \cos \left (t \right ) \end {array}\right ]+\mathit {C4} \,{\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} \frac {2 \sin \left (t \right )}{125}+\frac {11 \cos \left (t \right )}{125} \\ -\frac {3 \sin \left (t \right )}{25}-\frac {4 \cos \left (t \right )}{25} \\ \frac {2 \sin \left (t \right )}{5}+\frac {\cos \left (t \right )}{5} \\ -\sin \left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=\frac {\left (\left (-2 \mathit {C3} +11 \mathit {C4} \right ) \cos \left (t \right )+11 \sin \left (t \right ) \left (\mathit {C3} +\frac {2 \mathit {C4}}{11}\right )\right ) {\mathrm e}^{-2 t}}{125}-\mathit {C2} \,{\mathrm e}^{-t}-\frac {\mathit {C1} \,{\mathrm e}^{-3 t}}{27} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y \left (x \right )=\frac {\left (-2 \mathit {C3} +11 \mathit {C4} \right ) \cos \left (\ln \left (x \right )\right )+11 \sin \left (\ln \left (x \right )\right ) \left (\mathit {C3} +\frac {2 \mathit {C4}}{11}\right )}{125 x^{2}}-\frac {\mathit {C2}}{x}-\frac {\mathit {C1}}{27 x^{3}} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y \left (x \right )=-\frac {2 \cos \left (\ln \left (x \right )\right ) \mathit {C3}}{125 x^{2}}+\frac {11 \cos \left (\ln \left (x \right )\right ) \mathit {C4}}{125 x^{2}}+\frac {11 \sin \left (\ln \left (x \right )\right ) \mathit {C3}}{125 x^{2}}+\frac {2 \sin \left (\ln \left (x \right )\right ) \mathit {C4}}{125 x^{2}}-\frac {\mathit {C2}}{x}-\frac {\mathit {C1}}{27 x^{3}} \end {array} \]

15.63.3 Maple trace
`Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 
15.63.4 Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 27

dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+14*x^3*diff(diff(diff(y(x),x),x),x)+55*x^2*diff(diff(y(x),x),x)+65*x*diff(y(x),x)+15*y(x) = 0, 
       y(x),singsol=all)
 
\[ y \left (x \right ) = \frac {c_{3} x \sin \left (\ln \left (x \right )\right )+c_4 \cos \left (\ln \left (x \right )\right ) x +c_{1} x^{2}+c_{2}}{x^{3}} \]
15.63.5 Mathematica DSolve solution

Solving time : 0.005 (sec)
Leaf size : 32

DSolve[{x^4*D[y[x],{x,4}]+14*x^3*D[y[x],{x,3}]+55*x^2*D[y[x],{x,2}]+65*x*D[y[x],x]+15*y[x]==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_4 x^2+c_2 x \cos (\log (x))+c_1 x \sin (\log (x))+c_3}{x^3} \]