8.23 problem 13.4 (d)

8.23.1 Solving as second order linear constant coeff ode
8.23.2 Solving as second order integrable as is ode
8.23.3 Solving as second order ode missing y ode
8.23.4 Solving as type second_order_integrable_as_is (not using ABC version)
8.23.5 Solving using Kovacic algorithm
8.23.6 Solving as exact linear second order ode ode
8.23.7 Maple step by step solution

Internal problem ID [13494]
Internal file name [OUTPUT/12666_Friday_February_16_2024_12_04_49_AM_35238065/index.tex]

Book: Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section: Chapter 13. Higher order equations: Extending first order concepts. Additional exercises page 259
Problem number: 13.4 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

\[ \boxed {y^{\prime \prime }-y^{\prime }=0} \]

8.23.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is \[ A y''(x) + B y'(x) + C y(x) = 0 \] Where in the above \(A=1, B=-1, C=0\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives \[ \lambda ^{2} {\mathrm e}^{\lambda x}-\lambda \,{\mathrm e}^{\lambda x} = 0 \tag {1} \] Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda x}\) gives \[ \lambda ^{2}-\lambda = 0 \tag {2} \] Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula \[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \] Substituting \(A=1, B=-1, C=0\) into the above gives \begin {align*} \lambda _{1,2} &= \frac {1}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {-1^2 - (4) \left (1\right )\left (0\right )}\\ &= {\frac {1}{2}} \pm {\frac {1}{2}} \end {align*}

Hence \begin{align*} \lambda _1 &= {\frac {1}{2}} + {\frac {1}{2}} \\ \lambda _2 &= {\frac {1}{2}} - {\frac {1}{2}} \\ \end{align*} Which simplifies to \begin{align*} \lambda _1 &= 1 \\ \lambda _2 &= 0 \\ \end{align*} Since roots are real and distinct, then the solution is \begin{align*} y &= c_{1} e^{\lambda _1 x} + c_{2} e^{\lambda _2 x} \\ y &= c_{1} e^{\left (1\right )x} +c_{2} e^{\left (0\right )x} \\ \end{align*} Or \[ y =c_{1} {\mathrm e}^{x}+c_{2} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} {\mathrm e}^{x}+c_{2} \\ \end{align*}

Figure 489: Slope field plot

Verification of solutions

\[ y = c_{1} {\mathrm e}^{x}+c_{2} \] Verified OK.

8.23.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (y^{\prime \prime }-y^{\prime }\right )d x &= 0 \\ -y+y^{\prime } = c_{1} \end {align*}

Which is now solved for \(y\). Integrating both sides gives \begin {align*} \int \frac {1}{y +c_{1}}d y &= x +c_{2}\\ \ln \left (y +c_{1} \right )&=x +c_{2} \end {align*}

Solving for \(y\) gives these solutions \begin {align*} y_1&={\mathrm e}^{x +c_{2}}-c_{1}\\ &={\mathrm e}^{x} c_{2} -c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{x} c_{2} -c_{1} \\ \end{align*}

Figure 490: Slope field plot

Verification of solutions

\[ y = {\mathrm e}^{x} c_{2} -c_{1} \] Verified OK.

8.23.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable \(y\). Let \begin {align*} p(x) &= y^{\prime } \end {align*}

Then \begin {align*} p'(x) &= y^{\prime \prime } \end {align*}

Hence the ode becomes \begin {align*} p^{\prime }\left (x \right )-p \left (x \right ) = 0 \end {align*}

Which is now solve for \(p(x)\) as first order ode. Integrating both sides gives \begin {align*} \int \frac {1}{p}d p &= x +c_{1}\\ \ln \left (p \right )&=x +c_{1}\\ p&={\mathrm e}^{x +c_{1}}\\ p&=c_{1} {\mathrm e}^{x} \end {align*}

Since \(p=y^{\prime }\) then the new first order ode to solve is \begin {align*} y^{\prime } = c_{1} {\mathrm e}^{x} \end {align*}

Integrating both sides gives \begin {align*} y &= \int { c_{1} {\mathrm e}^{x}\,\mathop {\mathrm {d}x}}\\ &= c_{1} {\mathrm e}^{x}+c_{2} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} {\mathrm e}^{x}+c_{2} \\ \end{align*}

Figure 491: Slope field plot

Verification of solutions

\[ y = c_{1} {\mathrm e}^{x}+c_{2} \] Verified OK.

8.23.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as \[ y^{\prime \prime }-y^{\prime } = 0 \] Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (y^{\prime \prime }-y^{\prime }\right )d x &= 0 \\ -y+y^{\prime } = c_{1} \end {align*}

Which is now solved for \(y\). Integrating both sides gives \begin {align*} \int \frac {1}{y +c_{1}}d y &= x +c_{2}\\ \ln \left (y +c_{1} \right )&=x +c_{2} \end {align*}

Solving for \(y\) gives these solutions \begin {align*} y_1&={\mathrm e}^{x +c_{2}}-c_{1}\\ &={\mathrm e}^{x} c_{2} -c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{x} c_{2} -c_{1} \\ \end{align*}

Figure 492: Slope field plot

Verification of solutions

\[ y = {\mathrm e}^{x} c_{2} -c_{1} \] Verified OK.

8.23.5 Solving using Kovacic algorithm

Writing the ode as \begin {align*} y^{\prime \prime }-y^{\prime } &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end {align*}

Comparing (1) and (2) shows that \begin {align*} A &= 1 \\ B &= -1\tag {3} \\ C &= 0 \end {align*}

Applying the Liouville transformation on the dependent variable gives \begin {align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end {align*}

Then (2) becomes \begin {align*} z''(x) = r z(x)\tag {4} \end {align*}

Where \(r\) is given by \begin {align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end {align*}

Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives \begin {align*} r &= \frac {1}{4}\tag {6} \end {align*}

Comparing the above to (5) shows that \begin {align*} s &= 1\\ t &= 4 \end {align*}

Therefore eq. (4) becomes \begin {align*} z''(x) &= \frac {z \left (x \right )}{4} \tag {7} \end {align*}

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation \begin {align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end {align*}

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these cases.

Case

Allowed pole order for \(r\)

Allowed value for \(\mathcal {O}(\infty )\)

1

\(\left \{ 0,1,2,4,6,8,\cdots \right \} \)

\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \)

2

Need to have at least one pole that is either order \(2\) or odd order greater than \(2\). Any other pole order is allowed as long as the above condition is satisfied. Hence the following set of pole orders are all allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\).

no condition

3

\(\left \{ 1,2\right \} \)

\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)

Table 230: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore \begin {align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 0 - 0 \\ &= 0 \end {align*}

There are no poles in \(r\). Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole larger than \(2\) and the order at \(\infty \) is \(0\) then the necessary conditions for case one are met. Therefore \begin {align*} L &= [1] \end {align*}

Since \(r = {\frac {1}{4}}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z''=r z\) as one solution is \[ z_1(x) = {\mathrm e}^{-\frac {x}{2}} \] Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from \begin{align*} y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\ &= z_1 e^{ -\int \frac {1}{2} \frac {-1}{1} \,dx} \\ &= z_1 e^{\frac {x}{2}} \\ &= z_1 \left ({\mathrm e}^{\frac {x}{2}}\right ) \\ \end{align*} Which simplifies to \[ y_1 = 1 \] The second solution \(y_2\) to the original ode is found using reduction of order \[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \] Substituting gives \begin{align*} y_2 &= y_1 \int \frac { e^{\int -\frac {-1}{1} \,dx}}{\left (y_1\right )^2} \,dx \\ &= y_1 \int \frac { e^{x}}{\left (y_1\right )^2} \,dx \\ &= y_1 \left ({\mathrm e}^{x}\right ) \\ \end{align*} Therefore the solution is

\begin{align*} y &= c_{1} y_1 + c_{2} y_2 \\ &= c_{1} \left (1\right ) + c_{2} \left (1\left ({\mathrm e}^{x}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} +{\mathrm e}^{x} c_{2} \\ \end{align*}

Figure 493: Slope field plot

Verification of solutions

\[ y = c_{1} +{\mathrm e}^{x} c_{2} \] Verified OK.

8.23.6 Solving as exact linear second order ode ode

An ode of the form \begin {align*} p \left (x \right ) y^{\prime \prime }+q \left (x \right ) y^{\prime }+r \left (x \right ) y&=s \left (x \right ) \end {align*}

is exact if \begin {align*} p''(x) - q'(x) + r(x) &= 0 \tag {1} \end {align*}

For the given ode we have \begin {align*} p(x) &= 1\\ q(x) &= -1\\ r(x) &= 0\\ s(x) &= 0 \end {align*}

Hence \begin {align*} p''(x) &= 0\\ q'(x) &= 0 \end {align*}

Therefore (1) becomes \begin {align*} 0- \left (0\right ) + \left (0\right )&=0 \end {align*}

Hence the ode is exact. Since we now know the ode is exact, it can be written as \begin {align*} \left (p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y\right )' &= s(x) \end {align*}

Integrating gives \begin {align*} p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y&=\int {s \left (x \right )\, dx} \end {align*}

Substituting the above values for \(p,q,r,s\) gives \begin {align*} -y+y^{\prime }&=c_{1} \end {align*}

We now have a first order ode to solve which is \begin {align*} -y+y^{\prime } = c_{1} \end {align*}

Integrating both sides gives \begin {align*} \int \frac {1}{y +c_{1}}d y &= x +c_{2}\\ \ln \left (y +c_{1} \right )&=x +c_{2} \end {align*}

Solving for \(y\) gives these solutions \begin {align*} y_1&={\mathrm e}^{x +c_{2}}-c_{1}\\ &={\mathrm e}^{x} c_{2} -c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{x} c_{2} -c_{1} \\ \end{align*}

Figure 494: Slope field plot

Verification of solutions

\[ y = {\mathrm e}^{x} c_{2} -c_{1} \] Verified OK.

8.23.7 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }-y^{\prime }=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}-r =0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & r \left (r -1\right )=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (0, 1\right ) \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (x \right )=1 \\ \bullet & {} & \textrm {2nd solution of the ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (x \right )={\mathrm e}^{x} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y=c_{1} +{\mathrm e}^{x} c_{2} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(y(x),x$2)=diff(y(x),x),y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} +c_{2} {\mathrm e}^{x} \]

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 14

DSolve[y''[x]==y'[x],y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_1 e^x+c_2 \]