9.11 problem 14.2 (a)

9.11.1 Maple step by step solution

Internal problem ID [13535]
Internal file name [OUTPUT/12707_Friday_February_16_2024_12_11_09_AM_77552910/index.tex]

Book: Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section: Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number: 14.2 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

\[ \boxed {y^{\prime \prime }-5 y^{\prime }+6 y=0} \] Given that one solution of the ode is \begin {align*} y_1 &= {\mathrm e}^{2 x} \end {align*}

Given one basis solution \(y_{1}\left (x \right )\), then the second basis solution is given by \[ y_{2}\left (x \right ) = y_{1} \left (\int \frac {{\mathrm e}^{-\left (\int p d x \right )}}{y_{1}^{2}}d x \right ) \] Where \(p(x)\) is the coefficient of \(y^{\prime }\) when the ode is written in the normal form \[ y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = f \left (x \right ) \] Looking at the ode to solve shows that \[ p \left (x \right ) = -5 \] Therefore \begin{align*} y_{2}\left (x \right ) &= {\mathrm e}^{2 x} \left (\int {\mathrm e}^{-\left (\int \left (-5\right )d x \right )} {\mathrm e}^{-4 x}d x \right ) \\ y_{2}\left (x \right ) &= {\mathrm e}^{2 x} \int \frac {{\mathrm e}^{5 x}}{{\mathrm e}^{4 x}} , dx \\ y_{2}\left (x \right ) &= {\mathrm e}^{2 x} \left (\int {\mathrm e}^{x}d x \right ) \\ y_{2}\left (x \right ) &= {\mathrm e}^{2 x} {\mathrm e}^{x} \\ \end{align*} Hence the solution is \begin{align*} y &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= {\mathrm e}^{2 x} c_{1} +c_{2} {\mathrm e}^{2 x} {\mathrm e}^{x} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{2 x} c_{1} +c_{2} {\mathrm e}^{2 x} {\mathrm e}^{x} \\ \end{align*}

Figure 544: Slope field plot

Verification of solutions

\[ y = {\mathrm e}^{2 x} c_{1} +c_{2} {\mathrm e}^{2 x} {\mathrm e}^{x} \] Verified OK.

9.11.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }-5 y^{\prime }+6 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}-5 r +6=0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & \left (r -2\right ) \left (r -3\right )=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (2, 3\right ) \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (x \right )={\mathrm e}^{2 x} \\ \bullet & {} & \textrm {2nd solution of the ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (x \right )={\mathrm e}^{3 x} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y={\mathrm e}^{2 x} c_{1} +c_{2} {\mathrm e}^{3 x} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=0,exp(2*x)],singsol=all)
 

\[ y \left (x \right ) = c_{1} {\mathrm e}^{3 x}+c_{2} {\mathrm e}^{2 x} \]

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 20

DSolve[y''[x]-5*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to e^{2 x} \left (c_2 e^x+c_1\right ) \]