9.15 problem 14.2 (e)

9.15.1 Maple step by step solution

Internal problem ID [13539]
Internal file name [OUTPUT/12711_Friday_February_16_2024_12_11_10_AM_15032547/index.tex]

Book: Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section: Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number: 14.2 (e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

\[ \boxed {4 x^{2} y^{\prime \prime }+y=0} \] Given that one solution of the ode is \begin {align*} y_1 &= \sqrt {x} \end {align*}

Given one basis solution \(y_{1}\left (x \right )\), then the second basis solution is given by \[ y_{2}\left (x \right ) = y_{1} \left (\int \frac {{\mathrm e}^{-\left (\int p d x \right )}}{y_{1}^{2}}d x \right ) \] Where \(p(x)\) is the coefficient of \(y^{\prime }\) when the ode is written in the normal form \[ y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = f \left (x \right ) \] Looking at the ode to solve shows that \[ p \left (x \right ) = 0 \] Therefore \begin{align*} y_{2}\left (x \right ) &= \sqrt {x}\, \left (\int \frac {{\mathrm e}^{-\left (\int 0d x \right )}}{x}d x \right ) \\ y_{2}\left (x \right ) &= \sqrt {x} \int \frac {1}{x} , dx \\ y_{2}\left (x \right ) &= \sqrt {x}\, \left (\int \frac {1}{x}d x \right ) \\ y_{2}\left (x \right ) &= \sqrt {x}\, \ln \left (x \right ) \\ \end{align*} Hence the solution is \begin{align*} y &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= \sqrt {x}\, c_{1} +c_{2} \sqrt {x}\, \ln \left (x \right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \sqrt {x}\, c_{1} +c_{2} \sqrt {x}\, \ln \left (x \right ) \\ \end{align*}

Verification of solutions

\[ y = \sqrt {x}\, c_{1} +c_{2} \sqrt {x}\, \ln \left (x \right ) \] Verified OK.

9.15.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (\frac {d}{d x}y^{\prime }\right )+y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {y}{4 x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {y}{4 x^{2}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (\frac {d}{d x}y^{\prime }\right )+y=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime }=\left (\frac {d}{d t}y \left (t \right )\right ) t^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\left (\frac {d}{d t}\frac {d}{d t}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{2}+\left (\frac {d}{d x}t^{\prime }\left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {\frac {d}{d t}\frac {d}{d t}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (\frac {\frac {d}{d t}\frac {d}{d t}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}\right )+y \left (t \right )=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & 4 \frac {d}{d t}\frac {d}{d t}y \left (t \right )-4 \frac {d}{d t}y \left (t \right )+y \left (t \right )=0 \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}\frac {d}{d t}y \left (t \right )=\frac {d}{d t}y \left (t \right )-\frac {y \left (t \right )}{4} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (t \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d t}\frac {d}{d t}y \left (t \right )-\frac {d}{d t}y \left (t \right )+\frac {y \left (t \right )}{4}=0 \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}-r +\frac {1}{4}=0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & \frac {\left (2 r -1\right )^{2}}{4}=0 \\ \bullet & {} & \textrm {Root of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\frac {1}{2} \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )={\mathrm e}^{\frac {t}{2}} \\ \bullet & {} & \textrm {Repeated root, multiply}\hspace {3pt} y_{1}\left (t \right )\hspace {3pt}\textrm {by}\hspace {3pt} t \hspace {3pt}\textrm {to ensure linear independence}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )=t \,{\mathrm e}^{\frac {t}{2}} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=c_{1} y_{1}\left (t \right )+c_{2} y_{2}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y \left (t \right )=c_{1} {\mathrm e}^{\frac {t}{2}}+c_{2} t \,{\mathrm e}^{\frac {t}{2}} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y=\sqrt {x}\, c_{1} +c_{2} \sqrt {x}\, \ln \left (x \right ) \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y=\left (c_{2} \ln \left (x \right )+c_{1} \right ) \sqrt {x} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([4*x^2*diff(y(x),x$2)+y(x)=0,sqrt(x)],singsol=all)
 

\[ y \left (x \right ) = \left (c_{1} +c_{2} \ln \left (x \right )\right ) \sqrt {x} \]

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 24

DSolve[4*x^2*y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {1}{2} \sqrt {x} (c_2 \log (x)+2 c_1) \]