9.17 problem 14.2 (g)

9.17.1 Maple step by step solution

Internal problem ID [13541]
Internal file name [OUTPUT/12713_Friday_February_16_2024_12_11_10_AM_3828486/index.tex]

Book: Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section: Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number: 14.2 (g).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of_variable_on_y_method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {\left (1+x \right ) y^{\prime \prime }+y^{\prime } x -y=0} \] Given that one solution of the ode is \begin {align*} y_1 &= {\mathrm e}^{-x} \end {align*}

Given one basis solution \(y_{1}\left (x \right )\), then the second basis solution is given by \[ y_{2}\left (x \right ) = y_{1} \left (\int \frac {{\mathrm e}^{-\left (\int p d x \right )}}{y_{1}^{2}}d x \right ) \] Where \(p(x)\) is the coefficient of \(y^{\prime }\) when the ode is written in the normal form \[ y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = f \left (x \right ) \] Looking at the ode to solve shows that \[ p \left (x \right ) = \frac {x}{1+x} \] Therefore \begin{align*} y_{2}\left (x \right ) &= {\mathrm e}^{-x} \left (\int {\mathrm e}^{-\left (\int \frac {x}{1+x}d x \right )} {\mathrm e}^{2 x}d x \right ) \\ y_{2}\left (x \right ) &= {\mathrm e}^{-x} \int \frac {{\mathrm e}^{-x +\ln \left (1+x \right )}}{{\mathrm e}^{-2 x}} , dx \\ y_{2}\left (x \right ) &= {\mathrm e}^{-x} \left (\int {\mathrm e}^{x} \left (1+x \right )d x \right ) \\ y_{2}\left (x \right ) &= {\mathrm e}^{-x} x \,{\mathrm e}^{x} \\ \end{align*} Hence the solution is \begin{align*} y &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= {\mathrm e}^{-x} c_{1} +c_{2} {\mathrm e}^{-x} x \,{\mathrm e}^{x} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-x} c_{1} +c_{2} {\mathrm e}^{-x} x \,{\mathrm e}^{x} \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{-x} c_{1} +c_{2} {\mathrm e}^{-x} x \,{\mathrm e}^{x} \] Verified OK.

9.17.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (1+x \right ) y^{\prime \prime }+y^{\prime } x -y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {y}{1+x}-\frac {x y^{\prime }}{1+x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {x y^{\prime }}{1+x}-\frac {y}{1+x}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=-1\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {x}{1+x}, P_{3}\left (x \right )=-\frac {1}{1+x}\right ] \\ {} & \circ & \left (1+x \right )\cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (1+x \right )\cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=-1 \\ {} & \circ & \left (1+x \right )^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =-1 \\ {} & {} & \left (\left (1+x \right )^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}-1}}}=0 \\ {} & \circ & x =-1\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=-1\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=-1 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & \left (1+x \right ) y^{\prime \prime }+y^{\prime } x -y=0 \\ \bullet & {} & \textrm {Change variables using}\hspace {3pt} x =u -1\hspace {3pt}\textrm {so that the regular singular point is at}\hspace {3pt} u =0 \\ {} & {} & u \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )+\left (u -1\right ) \left (\frac {d}{d u}y \left (u \right )\right )-y \left (u \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (u \right ) \\ {} & {} & y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) u^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) u^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u \cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & u \cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) u^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & u \cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) \left (k +r \right ) u^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (-2+r \right ) u^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +1} \left (k +1+r \right ) \left (k +r -1\right )+a_{k} \left (k +r -1\right )\right ) u^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (-2+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, 2\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k +r -1\right ) \left (a_{k +1} \left (k +1+r \right )+a_{k}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {a_{k}}{k +1+r} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=-\frac {a_{k}}{k +1} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k}, a_{k +1}=-\frac {a_{k}}{k +1}\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =1+x \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (1+x \right )^{k}, a_{k +1}=-\frac {a_{k}}{k +1}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =2 \\ {} & {} & a_{k +1}=-\frac {a_{k}}{k +3} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =2 \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +2}, a_{k +1}=-\frac {a_{k}}{k +3}\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =1+x \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (1+x \right )^{k +2}, a_{k +1}=-\frac {a_{k}}{k +3}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (1+x \right )^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} \left (1+x \right )^{k +2}\right ), a_{k +1}=-\frac {a_{k}}{k +1}, b_{k +1}=-\frac {b_{k}}{k +3}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Reducible group (found another exponential solution) 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([(x+1)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,exp(-x)],singsol=all)
 

\[ y \left (x \right ) = c_{1} x +c_{2} {\mathrm e}^{-x} \]

Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 31

DSolve[(x+1)*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {2 e c_2 x+c_1 \cosh (x)-c_1 \sinh (x)}{\sqrt {2 e}} \]