20.8 problem 29.7 (c)

20.8.1 Existence and uniqueness analysis
20.8.2 Maple step by step solution

Internal problem ID [13880]
Internal file name [OUTPUT/13052_Friday_February_23_2024_06_54_23_AM_6862946/index.tex]

Book: Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section: Chapter 29. Convolution. Additional Exercises. page 523
Problem number: 29.7 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {y^{\prime \prime }-6 y^{\prime }+9 y={\mathrm e}^{3 t}} \] With initial conditions \begin {align*} [y \left (0\right ) = 0, y^{\prime }\left (0\right ) = 0] \end {align*}

20.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as \begin {align*} y^{\prime \prime } + p(t)y^{\prime } + q(t) y &= F \end {align*}

Where here \begin {align*} p(t) &=-6\\ q(t) &=9\\ F &={\mathrm e}^{3 t} \end {align*}

Hence the ode is \begin {align*} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \end {align*}

The domain of \(p(t)=-6\) is \[ \{-\infty

Solving using the Laplace transform method. Let \begin {align*} \mathcal {L}\left (y\right ) =Y(s) \end {align*}

Taking the Laplace transform of the ode and using the relations that \begin {align*} \mathcal {L}\left (y^{\prime }\right ) &= s Y(s) - y \left (0\right )\\ \mathcal {L}\left (y^{\prime \prime }\right ) &= s^2 Y(s) - y'(0) - s y \left (0\right ) \end {align*}

The given ode now becomes an algebraic equation in the Laplace domain \begin {align*} s^{2} Y \left (s \right )-y^{\prime }\left (0\right )-s y \left (0\right )-6 s Y \left (s \right )+6 y \left (0\right )+9 Y \left (s \right ) = \frac {1}{s -3}\tag {1} \end {align*}

But the initial conditions are \begin {align*} y \left (0\right )&=0\\ y'(0) &=0 \end {align*}

Substituting these initial conditions in above in Eq (1) gives \begin {align*} s^{2} Y \left (s \right )-6 s Y \left (s \right )+9 Y \left (s \right ) = \frac {1}{s -3} \end {align*}

Solving the above equation for \(Y(s)\) results in \begin {align*} Y(s) = \frac {1}{\left (s -3\right ) \left (s^{2}-6 s +9\right )} \end {align*}

Taking inverse Laplace transform gives \[ \mathcal {L}^{-1}\left (\frac {1}{\left (s -3\right ) \left (s^{2}-6 s +9\right )}\right ) = \frac {t^{2} {\mathrm e}^{3 t}}{2} \] Simplifying the solution gives \[ y = \frac {t^{2} {\mathrm e}^{3 t}}{2} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {t^{2} {\mathrm e}^{3 t}}{2} \\ \end{align*}

(a) Solution plot

(b) Slope field plot

Verification of solutions

\[ y = \frac {t^{2} {\mathrm e}^{3 t}}{2} \] Verified OK.

20.8.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}y^{\prime }-6 y^{\prime }+9 y={\mathrm e}^{3 t}, y \left (0\right )=0, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d t}y^{\prime } \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{2}-6 r +9=0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & \left (r -3\right )^{2}=0 \\ \bullet & {} & \textrm {Root of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =3 \\ \bullet & {} & \textrm {1st solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )={\mathrm e}^{3 t} \\ \bullet & {} & \textrm {Repeated root, multiply}\hspace {3pt} y_{1}\left (t \right )\hspace {3pt}\textrm {by}\hspace {3pt} t \hspace {3pt}\textrm {to ensure linear independence}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )=t \,{\mathrm e}^{3 t} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=c_{1} y_{1}\left (t \right )+c_{2} y_{2}\left (t \right )+y_{p}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y=c_{1} {\mathrm e}^{3 t}+c_{2} t \,{\mathrm e}^{3 t}+y_{p}\left (t \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (t \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Use variation of parameters to find}\hspace {3pt} y_{p}\hspace {3pt}\textrm {here}\hspace {3pt} f \left (t \right )\hspace {3pt}\textrm {is the forcing function}\hspace {3pt} \\ {} & {} & \left [y_{p}\left (t \right )=-y_{1}\left (t \right ) \left (\int \frac {y_{2}\left (t \right ) f \left (t \right )}{W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )}d t \right )+y_{2}\left (t \right ) \left (\int \frac {y_{1}\left (t \right ) f \left (t \right )}{W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )}d t \right ), f \left (t \right )={\mathrm e}^{3 t}\right ] \\ {} & \circ & \textrm {Wronskian of solutions of the homogeneous equation}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )=\left [\begin {array}{cc} {\mathrm e}^{3 t} & t \,{\mathrm e}^{3 t} \\ 3 \,{\mathrm e}^{3 t} & {\mathrm e}^{3 t}+3 t \,{\mathrm e}^{3 t} \end {array}\right ] \\ {} & \circ & \textrm {Compute Wronskian}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )={\mathrm e}^{6 t} \\ {} & \circ & \textrm {Substitute functions into equation for}\hspace {3pt} y_{p}\left (t \right ) \\ {} & {} & y_{p}\left (t \right )={\mathrm e}^{3 t} \left (-\left (\int t d t \right )+\left (\int 1d t \right ) t \right ) \\ {} & \circ & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y_{p}\left (t \right )=\frac {t^{2} {\mathrm e}^{3 t}}{2} \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & y=c_{1} {\mathrm e}^{3 t}+c_{2} t \,{\mathrm e}^{3 t}+\frac {t^{2} {\mathrm e}^{3 t}}{2} \\ \square & {} & \textrm {Check validity of solution}\hspace {3pt} y=c_{1} {\mathrm e}^{3 t}+c_{2} t {\mathrm e}^{3 t}+\frac {t^{2} {\mathrm e}^{3 t}}{2} \\ {} & \circ & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=0 \\ {} & {} & 0=c_{1} \\ {} & \circ & \textrm {Compute derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime }=3 c_{1} {\mathrm e}^{3 t}+c_{2} {\mathrm e}^{3 t}+3 c_{2} t \,{\mathrm e}^{3 t}+t \,{\mathrm e}^{3 t}+\frac {3 t^{2} {\mathrm e}^{3 t}}{2} \\ {} & \circ & \textrm {Use the initial condition}\hspace {3pt} y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=0 \\ {} & {} & 0=3 c_{1} +c_{2} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} c_{1} \hspace {3pt}\textrm {and}\hspace {3pt} c_{2} \\ {} & {} & \left \{c_{1} =0, c_{2} =0\right \} \\ {} & \circ & \textrm {Substitute constant values into general solution and simplify}\hspace {3pt} \\ {} & {} & y=\frac {t^{2} {\mathrm e}^{3 t}}{2} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=\frac {t^{2} {\mathrm e}^{3 t}}{2} \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   <- constant coefficients successful 
<- solving first the homogeneous part of the ODE successful`
 

Solution by Maple

Time used: 4.656 (sec). Leaf size: 13

dsolve([diff(y(t),t$2)-6*diff(y(t),t)+9*y(t)=exp(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
 

\[ y \left (t \right ) = \frac {t^{2} {\mathrm e}^{3 t}}{2} \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 17

DSolve[{y''[t]-6*y'[t]+9*y[t]==Exp[3*t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to \frac {1}{2} e^{3 t} t^2 \]