25.26 problem 35.4 (L)

25.26.1 Maple step by step solution

Internal problem ID [13997]
Internal file name [OUTPUT/13169_Friday_February_23_2024_06_58_15_AM_41157711/index.tex]

Book: Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section: Chapter 35. Modified Power series solutions and basic method of Frobenius. Additional Exercises. page 715
Problem number: 35.4 (L).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ 4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= 2\\ q(x) &= \frac {1}{4 x^{2}}\\ \end {align*}

Table 482: Table \(p(x),q(x)\) singularites.
\(p(x)=2\)
singularity type
\(q(x)=\frac {1}{4 x^{2}}\)
singularity type
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 4 x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+8 x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}8 x^{1+n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}8 x^{1+n +r} a_{n} \left (n +r \right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}8 a_{n -1} \left (n +r -1\right ) x^{n +r} \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}8 a_{n -1} \left (n +r -1\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ 4 x^{r} a_{0} r \left (-1+r \right )+a_{0} x^{r} = 0 \] Or \[ \left (4 x^{r} r \left (-1+r \right )+x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ x^{r} \left (2 r -1\right )^{2} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ \left (2 r -1\right )^{2} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= {\frac {1}{2}}\\ r_2 &= {\frac {1}{2}} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ x^{r} \left (2 r -1\right )^{2} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {1}{2}}, {\frac {1}{2}}\right ]\).

Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\tag {1A} \end {align*}

Now the second solution \(y_{2}\) is found using \begin {align*} y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right )\tag {1B} \end {align*}

Then the general solution will be \[ y = c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \] In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), \(a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0} = 1\), and \(\{c_{1}, c_{2}\}\) are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r = {\frac {1}{2}}\), Eqs (1A,1B) become \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {1}{2}}\\ y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +\frac {1}{2}}\right ) \end {align*}

We start by finding the first solution \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 4 a_{n} \left (n +r \right ) \left (n +r -1\right )+8 a_{n -1} \left (n +r -1\right )+a_{n} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = -\frac {8 a_{n -1} \left (n +r -1\right )}{4 n^{2}+8 n r +4 r^{2}-4 n -4 r +1}\tag {4} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{n} = \frac {a_{n -1} \left (-2 n +1\right )}{n^{2}}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {1}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=-\frac {8 r}{\left (2 r +1\right )^{2}} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{1}=-1 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8 r}{\left (2 r +1\right )^{2}}\) \(-1\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {64 r \left (1+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2}} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{2}={\frac {3}{4}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8 r}{\left (2 r +1\right )^{2}}\) \(-1\)
\(a_{2}\) \(\frac {64 r \left (1+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2}}\) \(\frac {3}{4}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=-\frac {512 r \left (1+r \right ) \left (2+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2}} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{3}=-{\frac {5}{12}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8 r}{\left (2 r +1\right )^{2}}\) \(-1\)
\(a_{2}\) \(\frac {64 r \left (1+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2}}\) \(\frac {3}{4}\)
\(a_{3}\) \(-\frac {512 r \left (1+r \right ) \left (2+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2}}\) \(-{\frac {5}{12}}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {4096 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2} \left (2 r +7\right )^{2}} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{4}={\frac {35}{192}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8 r}{\left (2 r +1\right )^{2}}\) \(-1\)
\(a_{2}\) \(\frac {64 r \left (1+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2}}\) \(\frac {3}{4}\)
\(a_{3}\) \(-\frac {512 r \left (1+r \right ) \left (2+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2}}\) \(-{\frac {5}{12}}\)
\(a_{4}\) \(\frac {4096 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2} \left (2 r +7\right )^{2}}\) \(\frac {35}{192}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=-\frac {32768 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2} \left (2 r +7\right )^{2} \left (2 r +9\right )^{2}} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{5}=-{\frac {21}{320}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8 r}{\left (2 r +1\right )^{2}}\) \(-1\)
\(a_{2}\) \(\frac {64 r \left (1+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2}}\) \(\frac {3}{4}\)
\(a_{3}\) \(-\frac {512 r \left (1+r \right ) \left (2+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2}}\) \(-{\frac {5}{12}}\)
\(a_{4}\) \(\frac {4096 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2} \left (2 r +7\right )^{2}}\) \(\frac {35}{192}\)
\(a_{5}\) \(-\frac {32768 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2} \left (2 r +7\right )^{2} \left (2 r +9\right )^{2}}\) \(-{\frac {21}{320}}\)

Using the above table, then the first solution \(y_{1}\left (x \right )\) is \begin{align*} y_{1}\left (x \right )&= \sqrt {x} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= \sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right ) \\ \end{align*} Now the second solution is found. The second solution is given by \[ y_{2}\left (x \right ) = y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right ) \] Where \(b_{n}\) is found using \[ b_{n} = \frac {d}{d r}a_{n ,r} \] And the above is then evaluated at \(r = {\frac {1}{2}}\). The above table for \(a_{n ,r}\) is used for this purpose. Computing the derivatives gives the following table

\(n\) \(b_{n ,r}\) \(a_{n}\) \(b_{n ,r} = \frac {d}{d r}a_{n ,r}\) \(b_{n}\left (r =\frac {1}{2}\right )\)
\(b_{0}\) \(1\) \(1\) N/A since \(b_{n}\) starts from 1 N/A
\(b_{1}\) \(-\frac {8 r}{\left (2 r +1\right )^{2}}\) \(-1\) \(\frac {16 r -8}{\left (2 r +1\right )^{3}}\) \(0\)
\(b_{2}\) \(\frac {64 r \left (1+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2}}\) \(\frac {3}{4}\) \(-\frac {64 \left (8 r^{3}+12 r^{2}+2 r -3\right )}{\left (2 r +1\right )^{3} \left (2 r +3\right )^{3}}\) \(-{\frac {1}{4}}\)
\(b_{3}\) \(-\frac {512 r \left (1+r \right ) \left (2+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2}}\) \(-{\frac {5}{12}}\) \(\frac {12288 r^{5}+67584 r^{4}+128000 r^{3}+87552 r^{2}+1024 r -15360}{\left (2 r +1\right )^{3} \left (2 r +5\right )^{3} \left (2 r +3\right )^{3}}\) \(\frac {1}{4}\)
\(b_{4}\) \(\frac {4096 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2} \left (2 r +7\right )^{2}}\) \(\frac {35}{192}\) \(-\frac {8192 \left (32 r^{7}+368 r^{6}+1680 r^{5}+3832 r^{4}+4438 r^{3}+2151 r^{2}-99 r -315\right )}{\left (2 r +1\right )^{3} \left (2 r +3\right )^{3} \left (2 r +5\right )^{3} \left (2 r +7\right )^{3}}\) \(-{\frac {19}{128}}\)
\(b_{5}\) \(-\frac {32768 r \left (1+r \right ) \left (2+r \right ) \left (3+r \right ) \left (4+r \right )}{\left (2 r +1\right )^{2} \left (2 r +3\right )^{2} \left (2 r +5\right )^{2} \left (2 r +7\right )^{2} \left (2 r +9\right )^{2}}\) \(-{\frac {21}{320}}\) \(\frac {5242880 r^{9}+102236160 r^{8}+841482240 r^{7}+3794534400 r^{6}+10157359104 r^{5}+16250142720 r^{4}+14574223360 r^{3}+5713920000 r^{2}-440008704 r -743178240}{\left (2 r +1\right )^{3} \left (2 r +7\right )^{3} \left (2 r +9\right )^{3} \left (2 r +5\right )^{3} \left (2 r +3\right )^{3}}\) \(\frac {25}{384}\)

The above table gives all values of \(b_{n}\) needed. Hence the second solution is \begin{align*} y_{2}\left (x \right )&=y_{1}\left (x \right ) \ln \left (x \right )+b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \\ &= \sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (-\frac {x^{2}}{4}+\frac {x^{3}}{4}-\frac {19 x^{4}}{128}+\frac {25 x^{5}}{384}+O\left (x^{6}\right )\right ) \\ \end{align*} Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} \sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right ) + c_{2} \left (\sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (-\frac {x^{2}}{4}+\frac {x^{3}}{4}-\frac {19 x^{4}}{128}+\frac {25 x^{5}}{384}+O\left (x^{6}\right )\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} \sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right )+c_{2} \left (\sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (-\frac {x^{2}}{4}+\frac {x^{3}}{4}-\frac {19 x^{4}}{128}+\frac {25 x^{5}}{384}+O\left (x^{6}\right )\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right )+c_{2} \left (\sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (-\frac {x^{2}}{4}+\frac {x^{3}}{4}-\frac {19 x^{4}}{128}+\frac {25 x^{5}}{384}+O\left (x^{6}\right )\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right )+c_{2} \left (\sqrt {x}\, \left (1-x +\frac {3 x^{2}}{4}-\frac {5 x^{3}}{12}+\frac {35 x^{4}}{192}-\frac {21 x^{5}}{320}+O\left (x^{6}\right )\right ) \ln \left (x \right )+\sqrt {x}\, \left (-\frac {x^{2}}{4}+\frac {x^{3}}{4}-\frac {19 x^{4}}{128}+\frac {25 x^{5}}{384}+O\left (x^{6}\right )\right )\right ) \] Verified OK.

25.26.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-2 y^{\prime }-\frac {y}{4 x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+2 y^{\prime }+\frac {y}{4 x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=2, P_{3}\left (x \right )=\frac {1}{4 x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {1}{4} \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r +1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -1 \\ {} & {} & x^{2}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k -1} \left (k -1+r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k -1+r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (-1+2 r \right )^{2} x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k} \left (2 k +2 r -1\right )^{2}+8 a_{k -1} \left (k -1+r \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (-1+2 r \right )^{2}=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r =\frac {1}{2} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (2 k +2 r -1\right )^{2}+8 a_{k -1} \left (k -1+r \right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & a_{k +1} \left (2 k +1+2 r \right )^{2}+8 a_{k} \left (k +r \right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {8 a_{k} \left (k +r \right )}{\left (2 k +1+2 r \right )^{2}} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & a_{k +1}=-\frac {8 a_{k} \left (k +\frac {1}{2}\right )}{\left (2 k +2\right )^{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{2}}, a_{k +1}=-\frac {8 a_{k} \left (k +\frac {1}{2}\right )}{\left (2 k +2\right )^{2}}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 67

Order:=6; 
dsolve(4*x^2*diff(y(x),x$2)+8*x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = \left (\left (c_{1} +c_{2} \ln \left (x \right )\right ) \left (1-x +\frac {3}{4} x^{2}-\frac {5}{12} x^{3}+\frac {35}{192} x^{4}-\frac {21}{320} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (-\frac {1}{4} x^{2}+\frac {1}{4} x^{3}-\frac {19}{128} x^{4}+\frac {25}{384} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \right ) \sqrt {x} \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 125

AsymptoticDSolveValue[4*x^2*y''[x]+8*x^2*y'[x]+y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \sqrt {x} \left (-\frac {21 x^5}{320}+\frac {35 x^4}{192}-\frac {5 x^3}{12}+\frac {3 x^2}{4}-x+1\right )+c_2 \left (\sqrt {x} \left (\frac {25 x^5}{384}-\frac {19 x^4}{128}+\frac {x^3}{4}-\frac {x^2}{4}\right )+\sqrt {x} \left (-\frac {21 x^5}{320}+\frac {35 x^4}{192}-\frac {5 x^3}{12}+\frac {3 x^2}{4}-x+1\right ) \log (x)\right ) \]