2.2.211 Problems 21001 to 21100

Table 2.435: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

21001

\begin{align*} w_{1}^{\prime }&=w_{2} \\ w_{2}^{\prime }&=\frac {a w_{1}}{z^{2}} \\ \end{align*}

system_of_ODEs

0.035

21002

\begin{align*} z^{2} u^{\prime \prime }+\left (3 z +1\right ) u^{\prime }+u&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

13.118

21003

\begin{align*} x^{\prime }+\ln \left (3\right ) x&=0 \\ \end{align*}

[_quadrature]

1.415

21004

\begin{align*} x^{\prime }+4 x&=4 \\ \end{align*}

[_quadrature]

0.855

21005

\begin{align*} x^{\prime }+\frac {\left (2 t^{3}+\sin \left (t \right )+5\right ) x}{t^{12}+5}&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_separable]

26.559

21006

\begin{align*} x^{\prime }&=-2 x+3 \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.267

21007

\begin{align*} x^{\prime }&=k x \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

2.481

21008

\begin{align*} x^{\prime }-2 x \cos \left (t \right )&=\cos \left (t \right ) \\ x \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

3.832

21009

\begin{align*} x^{\prime }+\frac {x}{t^{2}-1}&=0 \\ x \left (-2\right ) &= 1 \\ \end{align*}

[_separable]

3.721

21010

\begin{align*} x^{\prime }+\sec \left (t \right ) x&=\frac {1}{t -1} \\ x \left (\frac {\pi }{4}\right ) &= 1 \\ \end{align*}

[_linear]

6.825

21011

\begin{align*} t x^{\prime }+x&=2 t^{2} \\ \end{align*}

[_linear]

3.792

21012

\begin{align*} t^{2} x^{\prime }-2 t x&=t^{5} \\ x \left (0\right ) &= 0 \\ \end{align*}

[_linear]

16.359

21013

\begin{align*} x^{\prime }&=2 t x \\ x \left (0\right ) &= 4 \\ \end{align*}

[_separable]

4.851

21014

\begin{align*} x^{\prime }&=-t^{2} x \\ \end{align*}

[_separable]

3.424

21015

\begin{align*} x^{\prime }+a x&=b t \\ \end{align*}

[[_linear, ‘class A‘]]

2.512

21016

\begin{align*} x^{\prime }&=x+2 t \\ \end{align*}

[[_linear, ‘class A‘]]

1.645

21017

\begin{align*} x^{\prime }-2 x&=3 t \\ \end{align*}

[[_linear, ‘class A‘]]

1.667

21018

\begin{align*} x^{\prime }+3 x&=-2 t \\ \end{align*}

[[_linear, ‘class A‘]]

1.653

21019

\begin{align*} x^{\prime }+a x&=b t \\ x \left (t_{0} \right ) &= x_{0} \\ \end{align*}

[[_linear, ‘class A‘]]

2.676

21020

\begin{align*} x^{\prime }-x&=\frac {t}{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.743

21021

\begin{align*} x^{\prime }+x&=4 t \\ x \left (1\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

6.018

21022

\begin{align*} x^{\prime }-2 x&=2 t \\ x \left (0\right ) &= 3 \\ \end{align*}

[[_linear, ‘class A‘]]

2.798

21023

\begin{align*} x^{\prime }+k x&=1 \\ \end{align*}

[_quadrature]

1.322

21024

\begin{align*} x^{\prime }&=\frac {x}{t^{2}+1} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.169

21025

\begin{align*} x^{\prime }-k^{2} x&=1 \\ \end{align*}

[_quadrature]

1.276

21026

\begin{align*} x^{\prime }+2 x&=6 t \\ \end{align*}

[[_linear, ‘class A‘]]

1.660

21027

\begin{align*} x^{\prime }+x&=a t \\ \end{align*}

[[_linear, ‘class A‘]]

1.823

21028

\begin{align*} x^{\prime }&=t +x^{2} \\ x \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

25.793

21029

\begin{align*} x^{\prime }&=\frac {3 x^{{1}/{3}}}{2} \\ x \left (0\right ) &= a \\ \end{align*}

[_quadrature]

20.918

21030

\begin{align*} x^{\prime }&=x^{2} \\ x \left (t_{0} \right ) &= a \\ \end{align*}

[_quadrature]

5.233

21031

\begin{align*} x^{\prime }+\frac {\sin \left (t \right ) x}{1+{\mathrm e}^{t}}&=0 \\ \end{align*}

[_separable]

5.708

21032

\begin{align*} {\mathrm e}^{x^{\prime }}&=x \\ x \left (t_{0} \right ) &= a \\ \end{align*}

[_quadrature]

0.432

21033

\begin{align*} x^{\prime }&=\sqrt {1-x^{2}} \\ x \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_quadrature]

29.037

21034

\begin{align*} x^{\prime }&=x^{{1}/{4}} \\ x \left (0\right ) &= a \\ \end{align*}

[_quadrature]

12.283

21035

\begin{align*} x^{\prime }&=x^{p} \\ \end{align*}

[_quadrature]

6.468

21036

\begin{align*} x^{\prime }&=\sin \left (x\right ) \\ \end{align*}

[_quadrature]

21.833

21037

\begin{align*} x^{\prime }&=\arctan \left (x\right ) \\ \end{align*}

[_quadrature]

2.158

21038

\begin{align*} x^{\prime }&=\ln \left (x^{2}+1\right ) \\ \end{align*}

[_quadrature]

2.781

21039

\begin{align*} x^{\prime }&=t^{2} x^{4}+1 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_Chini]

2.639

21040

\begin{align*} x^{\prime }&=2+\sin \left (x\right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

45.436

21041

\begin{align*} x^{\prime }&=\sin \left (t x\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

1.642

21042

\begin{align*} x^{\prime }&=\left (2+x\right ) \left (1-x^{4}\right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

73.564

21043

\begin{align*} x^{\prime }&=x^{3}-x \\ x \left (0\right ) &= a \\ \end{align*}

[_quadrature]

20.878

21044

\begin{align*} x^{\prime }&=\arctan \left (x\right )+t \\ \end{align*}

[‘y=_G(x,y’)‘]

8.616

21045

\begin{align*} x^{\prime }&={\mathrm e}^{x}-t \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.470

21046

\begin{align*} x^{\prime }&=t x-t^{3} \\ x \left (a \right ) &= a^{2} \\ \end{align*}

[_linear]

3.553

21047

\begin{align*} x^{\prime }&=t x-t^{3} \\ x \left (0\right ) &= a^{2} \\ \end{align*}

[_linear]

3.175

21048

\begin{align*} x^{\prime }&=x^{2}-t^{2} \\ x \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

14.342

21049

\begin{align*} x^{\prime }&=x^{2}+1 \\ \end{align*}

[_quadrature]

3.699

21050

\begin{align*} x^{\prime }&=x^{2}-1 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

3.214

21051

\begin{align*} x^{\prime }&=x^{2}+x \\ x \left (1\right ) &= 1 \\ \end{align*}

[_quadrature]

2.158

21052

\begin{align*} x^{\prime }&=\frac {x^{2}+x}{2 x+1} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.122

21053

\begin{align*} x^{\prime }&=\frac {-x+x^{2}}{2 x-1} \\ x \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.902

21054

\begin{align*} x^{\prime }&=4 t^{3} x^{4} \\ \end{align*}

[_separable]

7.793

21055

\begin{align*} x^{\prime }&=-t x^{2} \\ \end{align*}

[_separable]

8.158

21056

\begin{align*} x^{\prime }&={\mathrm e}^{t} \left (x^{2}+1\right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

[_separable]

6.449

21057

\begin{align*} x^{\prime }&=\frac {t}{x} \\ x \left (\sqrt {2}\right ) &= 1 \\ \end{align*}

[_separable]

11.460

21058

\begin{align*} x^{\prime }&=-\frac {t}{4 x^{3}} \\ x \left (1\right ) &= 1 \\ \end{align*}

[_separable]

6.734

21059

\begin{align*} x^{\prime }&=-t^{2} x^{2} \\ x \left (1\right ) &= 2 \\ \end{align*}

[_separable]

8.741

21060

\begin{align*} x^{\prime }&=5 t \sqrt {x} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_separable]

23.067

21061

\begin{align*} x^{\prime }&=4 t^{3} \sqrt {x} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_separable]

23.142

21062

\begin{align*} x^{\prime }&=2 t \sqrt {x} \\ x \left (a \right ) &= 0 \\ \end{align*}

[_separable]

25.674

21063

\begin{align*} x^{\prime }&=-\left (1+p \right ) t^{p} x^{2} \\ \end{align*}

[_separable]

9.266

21064

\begin{align*} x^{\prime }&=\sqrt {1-x^{2}} \\ \end{align*}

[_quadrature]

6.542

21065

\begin{align*} 2 x^{2}+1&=\left (y^{5}-1\right ) y^{\prime } \\ \end{align*}

[_separable]

3.537

21066

\begin{align*} x +3 y+\left (3 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.432

21067

\begin{align*} x +y+\left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.810

21068

\begin{align*} a \,x^{p}+b y+\left (b x +d y^{q}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

6.283

21069

\begin{align*} 3 x^{2}-y+\left (4 y^{3}-x \right ) y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_exact, _rational]

3.168

21070

\begin{align*} y-x^{{1}/{3}}+\left (x +y\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5.233

21071

\begin{align*} {\mathrm e}^{x}-\frac {y^{2}}{2}+\left ({\mathrm e}^{y}-y x \right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_exact]

4.849

21072

\begin{align*} x +\sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\ y \left (2\right ) &= \pi \\ \end{align*}

[_exact]

4.098

21073

\begin{align*} x^{2}+2 y x -y^{2}+\left (x -y\right )^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

11.258

21074

\begin{align*} x^{2}+2 y x +2 y^{2}+\left (x^{2}+4 y x +5 y^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

28.215

21075

\begin{align*} x -2 y^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

5.746

21076

\begin{align*} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.305

21077

\begin{align*} x^{2}+a_{1} x y+a_{2} y^{2}+\left (x^{2}+b_{1} x y+b_{2} y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.677

21078

\begin{align*} x +y^{2}+B \left (x \right ) y y^{\prime }&=0 \\ \end{align*}

[_Bernoulli]

4.826

21079

\begin{align*} x +y^{2}+y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8.472

21080

\begin{align*} 2 y+x +\left (x^{2}-1\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

2.381

21081

\begin{align*} x +2 y+\left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

6.522

21082

\begin{align*} y^{2}+\left (y x +3 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.291

21083

\begin{align*} y y^{\prime } x +1+y^{2}&=0 \\ \end{align*}

[_separable]

7.291

21084

\begin{align*} x^{\prime }&=\frac {x+2 t}{t} \\ \end{align*}

[_linear]

5.193

21085

\begin{align*} x^{\prime }&=\frac {t x}{t^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.223

21086

\begin{align*} x^{\prime }&=\frac {3 x^{2}-2 t^{2}}{t x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13.577

21087

\begin{align*} x^{\prime }&=\frac {t^{2}+x^{2}}{2 t x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16.058

21088

\begin{align*} x^{\prime }&=\frac {x-t +1}{x-t +2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.703

21089

\begin{align*} x^{\prime }&=\frac {x-t}{x-t +1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.633

21090

\begin{align*} x^{\prime }&=-\frac {x+t +1}{x-t +1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13.802

21091

\begin{align*} x^{\prime }-x&=t x^{2} \\ x \left (0\right ) &= a \\ \end{align*}

[_Bernoulli]

4.653

21092

\begin{align*} x^{\prime }+2 t x&=-4 t x^{3} \\ \end{align*}

[_separable]

13.789

21093

\begin{align*} x^{\prime }-t x&=x^{2} \\ \end{align*}

[_Bernoulli]

2.956

21094

\begin{align*} {x^{\prime }}^{2}&=x^{2}+t^{2}-1 \\ \end{align*}

[‘y=_G(x,y’)‘]

10.319

21095

\begin{align*} {x^{\prime }}^{2}&=-4 x+4 \\ \end{align*}

[_quadrature]

0.637

21096

\begin{align*} {x^{\prime }}^{2}-t x+x&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.877

21097

\begin{align*} x&=t x^{\prime }-{x^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.299

21098

\begin{align*} x&=t x^{\prime }-{\mathrm e}^{x^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

5.411

21099

\begin{align*} x&=t x^{\prime }-\ln \left (x^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

8.427

21100

\begin{align*} x&=t x^{\prime }+\frac {1}{x^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

1.096