2.4.12 second order airy

Table 2.449: second order airy

#

ODE

CAS classification

Solved?

3805

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8494

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8495

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8496

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8497

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8498

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8499

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8500

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8501

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8502

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8503

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8504

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8505

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8506

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8507

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8508

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8509

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8510

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8511

\[ {}y^{\prime \prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8512

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8513

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8514

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10696

\[ {}y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10768

\[ {}4 y^{\prime \prime }+9 x y = 0 \]

[[_Emden, _Fowler]]

12178

\[ {}y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12188

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13353

\[ {}x^{\prime \prime }+\left (t +1\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17221

\[ {}y^{\prime \prime }+t y = 0 \]

[[_Emden, _Fowler]]

17226

\[ {}y^{\prime \prime }-t y = \frac {1}{\pi } \]

unknown