# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime \prime }+x y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-x y-x^{6}+64 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-x y-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-x y-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-x y-x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}4 y^{\prime \prime }+9 x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{\prime \prime }+\left (t +1\right ) x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+t y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-t y = \frac {1}{\pi }
\] |
unknown |
✓ |
|