2.2.23 Problems 2201 to 2300

Table 2.47: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

2201

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = -12 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x}+10 \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.243

2202

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+11 y^{\prime \prime }-14 y^{\prime }+10 y = -{\mathrm e}^{x} \left (\sin \left (x \right )+2 \cos \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.997

2203

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (x +1\right )+{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.252

2204

\[ {}y^{\prime \prime \prime \prime }+4 y = \sinh \left (x \right ) \cos \left (x \right )-\cosh \left (x \right ) \sin \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.103

2205

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+9 y^{\prime \prime }+7 y^{\prime }+2 y = {\mathrm e}^{-x} \left (30+24 x \right )-{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.230

2206

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-6 y^{\prime }+2 y = {\mathrm e}^{x} \left (12 x -2 \cos \left (x \right )+2 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.839

2207

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = {\mathrm e}^{2 x} \left (10+3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.178

2208

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y = -{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.217

2209

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (-3 x^{2}-4 x +5\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.196

2210

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = -2 \,{\mathrm e}^{-x} \left (6 x^{2}-18 x +7\right ) \]

[[_3rd_order, _missing_y]]

0.214

2211

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \left (x +1\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.184

2212

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = -{\mathrm e}^{-x} \left (3 x^{2}-9 x +4\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.202

2213

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-2 x} \left (\left (23-2 x \right ) \cos \left (x \right )+\left (8-9 x \right ) \sin \left (x \right )\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.230

2214

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{x} \left (\left (28+6 x \right ) \cos \left (2 x \right )+\left (11-12 x \right ) \sin \left (2 x \right )\right ) \]

[[_high_order, _missing_y]]

0.313

2215

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+14 y^{\prime \prime }-20 y^{\prime }+25 y = {\mathrm e}^{x} \left (\left (2+6 x \right ) \cos \left (2 x \right )+3 \sin \left (2 x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.347

2216

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x} \left (1-6 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.222

2217

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = -{\mathrm e}^{-x} \left (4-8 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.197

2218

\[ {}4 y^{\prime \prime \prime }-3 y^{\prime }-y = {\mathrm e}^{-\frac {x}{2}} \left (2-3 x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.230

2219

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \left (20-12 x \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.235

2220

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }+2 y = 30 \cos \left (x \right )-10 \sin \left (x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.620

2221

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+5 y^{\prime \prime }-2 y^{\prime } = -2 \,{\mathrm e}^{x} \left (\cos \left (x \right )-\sin \left (x \right )\right ) \]
i.c.

[[_high_order, _missing_y]]

1.903

2222

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 2 x \]

[[_3rd_order, _with_linear_symmetries]]

0.220

2223

\[ {}4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 y^{\prime } x +2 y = 30 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

0.230

2224

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.198

2225

\[ {}16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 y^{\prime } x +9 y = 96 x^{{5}/{2}} \]

[[_high_order, _with_linear_symmetries]]

0.296

2226

\[ {}x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 y^{\prime } x +24 y = x^{4} \]

[[_high_order, _with_linear_symmetries]]

0.267

2227

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 12 x^{2} \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.278

2228

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 4 x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

1.559

2229

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y = x^{3} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.250

2230

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 y^{\prime } x -16 y = 9 x^{4} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.259

2231

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \left (x +1\right ) \]
i.c.

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.235

2232

\[ {}x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 9 x^{2} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.305

2233

\[ {}4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-y^{\prime } x +y = 6 x \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.313

2234

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 y^{\prime } x +6 y = 40 x^{3} \]
i.c.

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.276

2235

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = F \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.216

2236

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = F \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.228

2237

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = F \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.260

2238

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = F \left (x \right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

1.506

2239

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2} \\ y_{2}^{\prime }=2 y_{1}+y_{2} \end {array}\right ] \]

system_of_ODEs

0.228

2240

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-\frac {5 y_{1}}{4}+\frac {3 y_{2}}{4} \\ y_{2}^{\prime }=\frac {3 y_{1}}{4}-\frac {5 y_{2}}{4} \end {array}\right ] \]

system_of_ODEs

0.223

2241

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-\frac {4 y_{1}}{5}+\frac {3 y_{2}}{5} \\ y_{2}^{\prime }=-\frac {2 y_{1}}{5}-\frac {11 y_{2}}{5} \end {array}\right ] \]

system_of_ODEs

0.273

2242

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}-4 y_{2} \\ y_{2}^{\prime }=-y_{1}-y_{2} \end {array}\right ] \]

system_of_ODEs

0.244

2243

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-4 y_{2} \\ y_{2}^{\prime }=-y_{1}-y_{2} \end {array}\right ] \]

system_of_ODEs

0.243

2244

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}-3 y_{2} \\ y_{2}^{\prime }=2 y_{1}-y_{2} \end {array}\right ] \]

system_of_ODEs

0.230

2245

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-6 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.243

2246

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-y_{2}-2 y_{3} \\ y_{2}^{\prime }=y_{1}-2 y_{2}-3 y_{3} \\ y_{3}^{\prime }=-4 y_{1}+y_{2}-y_{3} \end {array}\right ] \]

system_of_ODEs

0.487

2247

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-6 y_{1}-4 y_{2}-8 y_{3} \\ y_{2}^{\prime }=-4 y_{1}-4 y_{3} \\ y_{3}^{\prime }=-8 y_{1}-4 y_{2}-6 y_{3} \end {array}\right ] \]

system_of_ODEs

0.407

2248

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+5 y_{2}+8 y_{3} \\ y_{2}^{\prime }=y_{1}-y_{2}-2 y_{3} \\ y_{3}^{\prime }=-y_{1}-y_{2}-y_{3} \end {array}\right ] \]

system_of_ODEs

0.543

2249

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-y_{2}+2 y_{3} \\ y_{2}^{\prime }=12 y_{1}-4 y_{2}+10 y_{3} \\ y_{3}^{\prime }=-6 y_{1}+y_{2}-7 y_{3} \end {array}\right ] \]

system_of_ODEs

0.439

2250

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}-y_{2}-4 y_{3} \\ y_{2}^{\prime }=4 y_{1}-3 y_{2}-2 y_{3} \\ y_{3}^{\prime }=y_{1}-y_{2}-y_{3} \end {array}\right ] \]

system_of_ODEs

0.460

2251

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}+2 y_{2}-6 y_{3} \\ y_{2}^{\prime }=2 y_{1}+6 y_{2}+2 y_{3} \\ y_{3}^{\prime }=-2 y_{1}-2 y_{2}+2 y_{3} \end {array}\right ] \]

system_of_ODEs

1.530

2252

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+2 y_{2}-2 y_{3} \\ y_{2}^{\prime }=-2 y_{1}+7 y_{2}-2 y_{3} \\ y_{3}^{\prime }=-10 y_{1}+10 y_{2}-5 y_{3} \end {array}\right ] \]

system_of_ODEs

0.406

2253

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+y_{2}-y_{3} \\ y_{2}^{\prime }=3 y_{1}+5 y_{2}+y_{3} \\ y_{3}^{\prime }=-6 y_{1}+2 y_{2}+4 y_{3} \end {array}\right ] \]

system_of_ODEs

0.405

2254

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+4 y_{2} \\ y_{2}^{\prime }=-y_{1}+7 y_{2} \end {array}\right ] \]

system_of_ODEs

0.218

2255

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.193

2256

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-7 y_{1}+4 y_{2} \\ y_{2}^{\prime }=-y_{1}-11 y_{2} \end {array}\right ] \]

system_of_ODEs

0.214

2257

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+y_{2} \\ y_{2}^{\prime }=-y_{1}+y_{2} \end {array}\right ] \]

system_of_ODEs

0.197

2258

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}+12 y_{2} \\ y_{2}^{\prime }=-3 y_{1}-8 y_{2} \end {array}\right ] \]

system_of_ODEs

0.214

2259

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-10 y_{1}+9 y_{2} \\ y_{2}^{\prime }=-4 y_{1}+2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.227

2260

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-13 y_{1}+16 y_{2} \\ y_{2}^{\prime }=-9 y_{1}+11 y_{2} \end {array}\right ] \]

system_of_ODEs

0.229

2261

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{2}+y_{3} \\ y_{2}^{\prime }=-4 y_{1}+6 y_{2}+y_{3} \\ y_{3}^{\prime }=4 y_{2}+2 y_{3} \end {array}\right ] \]

system_of_ODEs

0.405

2262

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {y_{1}}{3}+\frac {y_{2}}{3}-y_{3} \\ y_{2}^{\prime }=-\frac {4 y_{1}}{3}-\frac {4 y_{2}}{3}+y_{3} \\ y_{3}^{\prime }=-\frac {2 y_{1}}{3}+\frac {y_{2}}{3} \end {array}\right ] \]

system_of_ODEs

0.406

2263

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}+y_{2}-y_{3} \\ y_{2}^{\prime }=-2 y_{1}+2 y_{3} \\ y_{3}^{\prime }=-y_{1}+3 y_{2}-y_{3} \end {array}\right ] \]

system_of_ODEs

0.398

2264

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}-2 y_{2}-2 y_{3} \\ y_{2}^{\prime }=-2 y_{1}+3 y_{2}-y_{3} \\ y_{3}^{\prime }=2 y_{1}-y_{2}+3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.395

2265

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=6 y_{1}-5 y_{2}+3 y_{3} \\ y_{2}^{\prime }=2 y_{1}-y_{2}+3 y_{3} \\ y_{3}^{\prime }=2 y_{1}+y_{2}+y_{3} \end {array}\right ] \]

system_of_ODEs

0.390

2266

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-11 y_{1}+8 y_{2} \\ y_{2}^{\prime }=-2 y_{1}-3 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

1.313

2267

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=15 y_{1}-9 y_{2} \\ y_{2}^{\prime }=16 y_{1}-9 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.276

2268

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-3 y_{1}-4 y_{2} \\ y_{2}^{\prime }=y_{1}-7 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.299

2269

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-7 y_{1}+24 y_{2} \\ y_{2}^{\prime }=-6 y_{1}+17 y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.266

2270

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-7 y_{1}+3 y_{2} \\ y_{2}^{\prime }=-3 y_{1}-y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.251

2271

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}-y_{2}-2 y_{3} \\ y_{3}^{\prime }=-y_{1}-y_{2}-y_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.436

2272

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}+2 y_{2}+y_{3} \\ y_{2}^{\prime }=-2 y_{1}+2 y_{2}+y_{3} \\ y_{3}^{\prime }=-3 y_{1}+3 y_{2}+2 y_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.357

2273

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-7 y_{1}-4 y_{2}+4 y_{3} \\ y_{2}^{\prime }=y_{1}+y_{3} \\ y_{3}^{\prime }=-9 y_{1}-5 y_{2}+6 y_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.739

2274

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}-4 y_{2}-y_{3} \\ y_{2}^{\prime }=3 y_{1}+6 y_{2}+y_{3} \\ y_{3}^{\prime }=-3 y_{1}-2 y_{2}+3 y_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

1.484

2275

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}-8 y_{2}-4 y_{3} \\ y_{2}^{\prime }=-3 y_{1}-y_{2}-4 y_{3} \\ y_{3}^{\prime }=y_{1}-y_{2}+9 y_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.582

2276

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-5 y_{1}-y_{2}+11 y_{3} \\ y_{2}^{\prime }=-7 y_{1}+y_{2}+13 y_{3} \\ y_{3}^{\prime }=-4 y_{1}+8 y_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.374

2277

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }=-y_{1}+9 y_{2}-3 y_{3} \\ y_{3}^{\prime }=-2 y_{1}+2 y_{2}+4 y_{3} \end {array}\right ] \]

system_of_ODEs

0.408

2278

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+10 y_{2}-12 y_{3} \\ y_{2}^{\prime }=2 y_{1}+2 y_{2}+3 y_{3} \\ y_{3}^{\prime }=2 y_{1}-y_{2}+6 y_{3} \end {array}\right ] \]

system_of_ODEs

0.390

2279

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-6 y_{1}-4 y_{2}-4 y_{3} \\ y_{2}^{\prime }=2 y_{1}-y_{2}+y_{3} \\ y_{3}^{\prime }=2 y_{1}+3 y_{2}+y_{3} \end {array}\right ] \]

system_of_ODEs

0.383

2280

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{2}-2 y_{3} \\ y_{2}^{\prime }=-y_{1}+5 y_{2}-3 y_{3} \\ y_{3}^{\prime }=y_{1}+y_{2}+y_{3} \end {array}\right ] \]

system_of_ODEs

0.396

2281

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}-12 y_{2}+10 y_{3} \\ y_{2}^{\prime }=2 y_{1}-24 y_{2}+11 y_{3} \\ y_{3}^{\prime }=2 y_{1}-24 y_{2}+8 y_{3} \end {array}\right ] \]

system_of_ODEs

0.449

2282

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}-12 y_{2}+8 y_{3} \\ y_{2}^{\prime }=y_{1}-9 y_{2}+4 y_{3} \\ y_{3}^{\prime }=y_{1}-6 y_{2}+y_{3} \end {array}\right ] \]

system_of_ODEs

1.454

2283

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-4 y_{1}-y_{3} \\ y_{2}^{\prime }=-y_{1}-3 y_{2}-y_{3} \\ y_{3}^{\prime }=y_{1}-2 y_{3} \end {array}\right ] \]

system_of_ODEs

0.361

2284

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-3 y_{1}-3 y_{2}+4 y_{3} \\ y_{2}^{\prime }=4 y_{1}+5 y_{2}-8 y_{3} \\ y_{3}^{\prime }=2 y_{1}+3 y_{2}-5 y_{3} \end {array}\right ] \]

system_of_ODEs

0.378

2285

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-3 y_{1}-y_{2} \\ y_{2}^{\prime }=y_{1}-y_{2} \\ y_{3}^{\prime }=-y_{1}-y_{2}-2 y_{3} \end {array}\right ] \]

system_of_ODEs

0.305

2286

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-y_{1}+2 y_{2} \\ y_{2}^{\prime }=-5 y_{1}+5 y_{2} \end {array}\right ] \]

system_of_ODEs

0.328

2287

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-11 y_{1}+4 y_{2} \\ y_{2}^{\prime }=-26 y_{1}+9 y_{2} \end {array}\right ] \]

system_of_ODEs

0.371

2288

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2} \\ y_{2}^{\prime }=-4 y_{1}+5 y_{2} \end {array}\right ] \]

system_of_ODEs

0.343

2289

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-6 y_{2} \\ y_{2}^{\prime }=3 y_{1}-y_{2} \end {array}\right ] \]

system_of_ODEs

0.322

2290

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-3 y_{1}-3 y_{2}+y_{3} \\ y_{2}^{\prime }=2 y_{2}+2 y_{3} \\ y_{3}^{\prime }=5 y_{1}+y_{2}+y_{3} \end {array}\right ] \]

system_of_ODEs

9.023

2291

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-3 y_{1}+3 y_{2}+y_{3} \\ y_{2}^{\prime }=y_{1}-5 y_{2}-3 y_{3} \\ y_{3}^{\prime }=-3 y_{1}+7 y_{2}+3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.679

2292

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2}-y_{3} \\ y_{2}^{\prime }=y_{2}+y_{3} \\ y_{3}^{\prime }=y_{1}+y_{3} \end {array}\right ] \]

system_of_ODEs

0.545

2293

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-3 y_{1}+y_{2}-3 y_{3} \\ y_{2}^{\prime }=4 y_{1}-y_{2}+2 y_{3} \\ y_{3}^{\prime }=4 y_{1}-2 y_{2}+3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.647

2294

\[ {}y^{\prime }+\sin \left (t \right ) y = 0 \]
i.c.

[_separable]

0.158

2295

\[ {}y^{\prime }+{\mathrm e}^{t^{2}} y = 0 \]
i.c.

[_separable]

0.296

2296

\[ {}y^{\prime }-2 t y = t \]

[_separable]

0.069

2297

\[ {}y^{\prime }+2 t y = t \]
i.c.

[_separable]

1.316

2298

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

0.358

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

0.956

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

1.514