2.2.233 Problems 23201 to 23300

Table 2.479: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

23201

\begin{align*} 2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

1.740

23202

\begin{align*} 5 x -y+3 y^{\prime } x&=0 \\ \end{align*}

[_linear]

2.944

23203

\begin{align*} y^{\prime } x +y&=3 \\ \end{align*}

[_separable]

1.585

23204

\begin{align*} x^{2}+y^{2}-2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.882

23205

\begin{align*} x^{2}+y^{2}+1-2 y y^{\prime } x&=0 \\ \end{align*}

[_rational, _Bernoulli]

2.646

23206

\begin{align*} -x^{2} y+\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.931

23207

\begin{align*} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

25.762

23208

\begin{align*} 3 y+\left (7 x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.933

23209

\begin{align*} {\mathrm e}^{\frac {y}{x}}-\frac {y}{x}+y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.731

23210

\begin{align*} y x -\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.640

23211

\begin{align*} y x +1+y^{2} y^{\prime }&=0 \\ \end{align*}

[_rational]

2.687

23212

\begin{align*} x -y+\left (2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.243

23213

\begin{align*} y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.294

23214

\begin{align*} y^{\prime }&=\frac {x -y}{x +y+2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.260

23215

\begin{align*} y^{\prime }&=\frac {2 x +y-4}{x -y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

28.414

23216

\begin{align*} y^{\prime }&=\frac {3 x -2 y+7}{2 x +3 y+9} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.221

23217

\begin{align*} y^{\prime }&=\frac {5 x -y-2}{x +y+4} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.729

23218

\begin{align*} y^{\prime }&=\frac {x -y+5}{2 x -y-3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

31.200

23219

\begin{align*} y^{\prime }&=\frac {y-x +1}{3 x -y-1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.911

23220

\begin{align*} y^{\prime }&=\frac {y}{x -y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13.159

23221

\begin{align*} y^{\prime }&=\frac {2 x}{x -y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12.521

23222

\begin{align*} y^{\prime }&=-\frac {x +2 y}{y} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.974

23223

\begin{align*} x^{2}+y^{2}-2 y y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.619

23224

\begin{align*} y^{\prime }&=\frac {\sqrt {2}\, \sqrt {\frac {x +y}{x}}}{2} \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

27.327

23225

\begin{align*} y^{\prime }&=\frac {2 x +y-4}{x -y+1} \\ y \left (2\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

34.859

23226

\begin{align*} y^{\prime \prime }+y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.242

23227

\begin{align*} y^{\left (5\right )}-y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.060

23228

\begin{align*} y^{\prime \prime }&=\frac {1+{y^{\prime }}^{2}}{2 y} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.927

23229

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.336

23230

\begin{align*} y^{\prime \prime } x +y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_y]]

3.716

23231

\begin{align*} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x}&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.482

23232

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.080

23233

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.658

23234

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.312

23235

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.402

23236

\begin{align*} y^{\prime \prime }&=\frac {1+{y^{\prime }}^{2}}{y} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.369

23237

\begin{align*} y^{\prime \prime }&=y^{\prime } \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

12.225

23238

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

22.207

23239

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.826

23240

\begin{align*} y^{\prime \prime \prime }+x^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.030

23241

\begin{align*} y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=5 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.035

23242

\begin{align*} y^{\prime \prime }+\cos \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

37.019

23243

\begin{align*} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y&=2 x^{2}+3 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.158

23244

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.631

23245

\begin{align*} \sin \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x^{2}}&=1 \\ \end{align*}

[_linear]

4.973

23246

\begin{align*} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

23247

\begin{align*} x^{2} y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }-2&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

3.517

23248

\begin{align*} y^{\prime }+\sqrt {y}&=3 x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Chini]

11.811

23249

\begin{align*} y^{\prime \prime }+y x&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.349

23250

\begin{align*} 2 y-3 y^{\prime \prime } x +4 y^{\prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.520

23251

\begin{align*} y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.086

23252

\begin{align*} {\mathrm e}^{x} {y^{\prime }}^{2}+3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.960

23253

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.712

23254

\begin{align*} y y^{\prime }&=3 \\ \end{align*}

[_quadrature]

0.619

23255

\begin{align*} x y^{\prime \prime \prime }+4 y^{\prime \prime } x -y x&=1 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.031

23256

\begin{align*} 7 y^{\prime }-y x&=0 \\ \end{align*}

[_separable]

2.201

23257

\begin{align*} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.885

23258

\begin{align*} y^{\prime }&={\mathrm e}^{2 x} \\ \end{align*}

[_quadrature]

0.243

23259

\begin{align*} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.033

23260

\begin{align*} y^{\prime \prime \prime }&=x^{3} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.102

23261

\begin{align*} y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.210

23262

\begin{align*} y^{\prime \prime }&=3 x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.347

23263

\begin{align*} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.030

23264

\begin{align*} y^{\prime \prime \prime }&=x^{2} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.095

23265

\begin{align*} y^{\left (5\right )}&=0 \\ \end{align*}

[[_high_order, _quadrature]]

0.036

23266

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.309

23267

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.474

23268

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.985

23269

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}

[_separable]

2.448

23270

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.875

23271

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.102

23272

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.969

23273

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.951

23274

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.314

23275

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.037

23276

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.979

23277

\begin{align*} y^{\prime \prime } x -3 y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.355

23278

\begin{align*} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.694

23279

\begin{align*} \left (x -a \right ) \left (x -b \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

155.437

23280

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.796

23281

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.952

23282

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

10.681

23283

\begin{align*} 3 y^{\prime \prime }+48 y^{\prime }+192 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.514

23284

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

10.513

23285

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

6.921

23286

\begin{align*} y^{\prime \prime }+y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.477

23287

\begin{align*} y^{\prime \prime } x +y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.462

23288

\begin{align*} y^{\prime \prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

0.929

23289

\begin{align*} \left (1-x \right ) y^{\prime \prime }-y^{\prime } x +{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.786

23290

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +y&=2 \\ y \left (\frac {3 \pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {3 \pi }{4}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.161

23291

\begin{align*} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y x&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 2 \\ y^{\prime \prime }\left (-1\right ) &= 2 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.085

23292

\begin{align*} y y^{\prime }+y^{\prime \prime }&=2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19.230

23293

\begin{align*} 3 y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.083

23294

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+3 y&=1 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.898

23295

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.088

23296

\begin{align*} \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.500

23297

\begin{align*} 2 y^{\prime \prime } x -7 \cos \left (x \right ) y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.175

23298

\begin{align*} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.252

23299

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.030

23300

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

156.558