| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
1.740 |
|
| \begin{align*}
5 x -y+3 y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.944 |
|
| \begin{align*}
y^{\prime } x +y&=3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| \begin{align*}
x^{2}+y^{2}-2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.882 |
|
| \begin{align*}
x^{2}+y^{2}+1-2 y y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.646 |
|
| \begin{align*}
-x^{2} y+\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
25.762 |
|
| \begin{align*}
3 y+\left (7 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.933 |
|
| \begin{align*}
{\mathrm e}^{\frac {y}{x}}-\frac {y}{x}+y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.731 |
|
| \begin{align*}
y x -\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.640 |
|
| \begin{align*}
y x +1+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
2.687 |
|
| \begin{align*}
x -y+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.243 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.294 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y}{x +y+2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.260 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +y-4}{x -y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
28.414 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x -2 y+7}{2 x +3 y+9} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.221 |
|
| \begin{align*}
y^{\prime }&=\frac {5 x -y-2}{x +y+4} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.729 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y+5}{2 x -y-3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
31.200 |
|
| \begin{align*}
y^{\prime }&=\frac {y-x +1}{3 x -y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
14.911 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x -y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.159 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x}{x -y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.521 |
|
| \begin{align*}
y^{\prime }&=-\frac {x +2 y}{y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
5.974 |
|
| \begin{align*}
x^{2}+y^{2}-2 y y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.619 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {2}\, \sqrt {\frac {x +y}{x}}}{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
27.327 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +y-4}{x -y+1} \\
y \left (2\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
34.859 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.242 |
|
| \begin{align*}
y^{\left (5\right )}-y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.060 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1+{y^{\prime }}^{2}}{2 y} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
0.927 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.336 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.716 |
|
| \begin{align*}
y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x}&=0 \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&=1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.080 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.658 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.312 |
|
| \begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.402 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1+{y^{\prime }}^{2}}{y} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
3.369 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
12.225 |
|
| \begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
22.207 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.826 |
|
| \begin{align*}
y^{\prime \prime \prime }+x^{2} y&={\mathrm e}^{x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
0.030 |
|
| \begin{align*}
y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=5 \\
\end{align*} |
[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.035 |
|
| \begin{align*}
y^{\prime \prime }+\cos \left (y\right )&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
37.019 |
|
| \begin{align*}
y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y&=2 x^{2}+3 \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.158 |
|
| \begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
18.631 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x^{2}}&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
4.973 |
|
| \begin{align*}
2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+y x&=0 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.038 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }-2&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.517 |
|
| \begin{align*}
y^{\prime }+\sqrt {y}&=3 x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Chini] |
✓ |
✓ |
✗ |
✗ |
11.811 |
|
| \begin{align*}
y^{\prime \prime }+y x&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.349 |
|
| \begin{align*}
2 y-3 y^{\prime \prime } x +4 y^{\prime }&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.520 |
|
| \begin{align*}
y^{\prime \prime \prime }&=2 \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.086 |
|
| \begin{align*}
{\mathrm e}^{x} {y^{\prime }}^{2}+3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.960 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.712 |
|
| \begin{align*}
y y^{\prime }&=3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.619 |
|
| \begin{align*}
x y^{\prime \prime \prime }+4 y^{\prime \prime } x -y x&=1 \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
0.031 |
|
| \begin{align*}
7 y^{\prime }-y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.201 |
|
| \begin{align*}
\left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
2.885 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
y^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.033 |
|
| \begin{align*}
y^{\prime \prime \prime }&=x^{3} \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.102 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.210 |
|
| \begin{align*}
y^{\prime \prime }&=3 x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.347 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.030 |
|
| \begin{align*}
y^{\prime \prime \prime }&=x^{2} \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
y^{\left (5\right )}&=0 \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.036 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.309 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.474 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.985 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.448 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.875 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.102 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.969 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.951 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
4.314 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.037 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.979 |
|
| \begin{align*}
y^{\prime \prime } x -3 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
3.355 |
|
| \begin{align*}
y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
2.694 |
|
| \begin{align*}
\left (x -a \right ) \left (x -b \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
155.437 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.796 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.952 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
10.681 |
|
| \begin{align*}
3 y^{\prime \prime }+48 y^{\prime }+192 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.514 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
10.513 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
6.921 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✗ |
✗ |
✗ |
✗ |
1.462 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.929 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }-y^{\prime } x +{\mathrm e}^{x} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
7.786 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +y&=2 \\
y \left (\frac {3 \pi }{4}\right ) &= 1 \\
y^{\prime }\left (\frac {3 \pi }{4}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
7.161 |
|
| \begin{align*}
\left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y x&=0 \\
y \left (-1\right ) &= 0 \\
y^{\prime }\left (-1\right ) &= 2 \\
y^{\prime \prime }\left (-1\right ) &= 2 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.085 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
19.230 |
|
| \begin{align*}
3 y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.083 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }+3 y&=1 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
1.898 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
2.088 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.500 |
|
| \begin{align*}
2 y^{\prime \prime } x -7 \cos \left (x \right ) y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
4.175 |
|
| \begin{align*}
y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-y x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
2.252 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✗ |
✗ |
2.030 |
|
| \begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
156.558 |
|