| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{i t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
17.335 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.676 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
30.590 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
30.187 |
|
| \begin{align*}
-y+y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
-y+y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.112 |
|
| \begin{align*}
-y+y^{\prime }&={\mathrm e}^{t} \cos \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.121 |
|
| \begin{align*}
y^{\prime \prime }+4 y&={\mathrm e}^{t} \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
21.806 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{c t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
30.703 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=t^{3} {\mathrm e}^{5 t} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=t^{3} \cos \left (5 t \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime }-a y&=f \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.027 |
|
| \begin{align*}
y^{\prime }-a y&={\mathrm e}^{c t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.284 |
|
| \begin{align*}
y^{\prime }-a y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.578 |
|
| \begin{align*}
y^{\prime }-a y&=t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.684 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
29.825 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
30.469 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.207 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
6.089 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
32.148 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
30.399 |
|
| \begin{align*}
y^{\prime \prime }&=t \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| \begin{align*}
y^{\prime \prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.166 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
15.159 |
|
| \begin{align*}
\frac {c y^{\prime \prime }}{\omega ^{2}}+c y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
24.483 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{a t} \\
y \left (0\right ) &= A \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{a t} \\
y \left (0\right ) &= A \\
y^{\prime }\left (0\right ) &= B \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=1 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime }-a y&=t \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=1 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\delta \left (t \right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime \prime }+B y^{\prime }+C y&=\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
y^{\prime \prime }+B y^{\prime }+C y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
y^{\prime }&=-\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=-\sin \left (t \right )+\delta \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.543 |
|
| \begin{align*}
y^{\prime }&=y^{2}-t \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
5.337 |
|
| \begin{align*}
y^{\prime }&=2 \,{\mathrm e}^{2 t}-4 \,{\mathrm e}^{t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
10.152 |
|
| \begin{align*}
x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.037 |
|
| \begin{align*}
t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y&=0 \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.049 |
|
| \begin{align*}
u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
1.778 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
61.993 |
|
| \begin{align*}
R^{\prime \prime }&=-\frac {k}{R^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
64.600 |
|
| \begin{align*}
\sin \left (t \right ) y^{\prime \prime \prime }-\cos \left (t \right ) y^{\prime }&=2 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✗ |
✓ |
✓ |
✗ |
0.892 |
|
| \begin{align*}
x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
36.095 |
|
| \begin{align*}
y^{2}-1+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.173 |
|
| \begin{align*}
2 y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.142 |
|
| \begin{align*}
y^{\prime }+20 y&=24 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.834 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.870 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.566 |
|
| \begin{align*}
\left (-x +y\right ) y^{\prime }&=y-x +8 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| \begin{align*}
y^{\prime }&=25+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.328 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.169 |
|
| \begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.580 |
|
| \begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| \begin{align*}
2 y x +\left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.602 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| \begin{align*}
y^{\prime }+4 y x&=8 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.004 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.853 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=12 x^{2} \\
\end{align*} |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime } x -3 y x&=1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.797 |
|
| \begin{align*}
2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.563 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=10 \sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.536 |
|
| \begin{align*}
y^{\prime }+2 y x&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.205 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.115 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.135 |
|
| \begin{align*}
3 y^{\prime }&=4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.000 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.824 |
|
| \begin{align*}
2 y^{\prime \prime }+9 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.603 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
13.829 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
9.075 |
|
| \begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.952 |
|
| \begin{align*}
y^{\prime }&=y^{2}+2 y-3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
\left (-1+y\right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.392 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
20.439 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=5 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\
y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.038 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.092 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 y^{\prime } x -78 y&=0 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.173 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.898 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.629 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= {\frac {1}{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.506 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (-2\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.454 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.489 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (\frac {1}{2}\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.502 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.217 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{2}\right ) &= 0 \\
x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.189 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.024 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\
x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.270 |
|