2.3.43 Problems 4201 to 4300

Table 2.617: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

4201

9714

\begin{align*} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\ \end{align*}

0.329

4202

10031

\begin{align*} y y^{\prime }&=1-x {y^{\prime }}^{3} \\ \end{align*}

0.329

4203

10567

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 y x&=0 \\ \end{align*}

0.329

4204

14412

\begin{align*} x^{\prime }&=x-3 y \\ y^{\prime }&=3 x+7 y \\ \end{align*}

0.329

4205

15010

\begin{align*} x^{\prime }&=-6 x+2 y \\ y^{\prime }&=-2 x-2 y \\ \end{align*}

0.329

4206

15608

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.329

4207

16182

\begin{align*} y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

0.329

4208

18637

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=3 x-2 y \\ \end{align*}

0.329

4209

18654

\begin{align*} x^{\prime }&=-\frac {3 x}{4}-\frac {7 y}{4} \\ y^{\prime }&=\frac {x}{4}+\frac {5 y}{4} \\ \end{align*}

0.329

4210

18655

\begin{align*} x^{\prime }&=-\frac {x}{4}-\frac {3 y}{4} \\ y^{\prime }&=\frac {x}{2}+y \\ \end{align*}

0.329

4211

18698

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.329

4212

20412

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) x&=1 \\ \end{align*}

0.329

4213

20882

\begin{align*} y^{\prime }&=2 y x -x^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.329

4214

21207

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=x+3 y \\ \end{align*}

0.329

4215

21208

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+2 y \\ \end{align*}

0.329

4216

21646

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.329

4217

23593

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x+2 y \\ \end{align*}

0.329

4218

980

\begin{align*} x_{1}^{\prime }&=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }&=100 x_{1}-60 x_{2} \\ \end{align*}

0.330

4219

1363

\begin{align*} y^{\prime \prime }+k^{2} x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.330

4220

2610

\begin{align*} y^{\prime \prime }+y^{\prime } t +y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.330

4221

6474

\begin{align*} 2 y y^{\prime \prime }&=-1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2} \\ \end{align*}

0.330

4222

6773

\begin{align*} 6 y^{\prime \prime } x +6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

0.330

4223

9610

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

0.330

4224

12901

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.330

4225

14387

\begin{align*} x^{\prime }&=-6 y \\ y^{\prime }&=6 y \\ \end{align*}

0.330

4226

19663

\begin{align*} x^{\prime }&=\cos \left (t \right ) \\ x \left (1\right ) &= 0 \\ \end{align*}

0.330

4227

19853

\begin{align*} x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 y^{\prime } x&=\ln \left (x \right )^{2} \\ \end{align*}

0.330

4228

20391

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+y x&=0 \\ \end{align*}

0.330

4229

25370

\begin{align*} y_{1}^{\prime }&=2 y_{1}+y_{2} \\ y_{2}^{\prime }&=2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -1 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

0.330

4230

1069

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.331

4231

1425

\begin{align*} x_{1}^{\prime }&=3 x_{1}+9 x_{2} \\ x_{2}^{\prime }&=-x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 4 \\ \end{align*}

0.331

4232

1880

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.331

4233

3929

\begin{align*} 3 y+y^{\prime }&=2 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

0.331

4234

4591

\begin{align*} y^{\prime \prime }-2 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.331

4235

8612

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.331

4236

10629

\begin{align*} 2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y&=0 \\ \end{align*}

0.331

4237

14384

\begin{align*} x^{\prime }&=-2 x \\ y^{\prime }&=x \\ \end{align*}

0.331

4238

15980

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.331

4239

21686

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.331

4240

23416

\begin{align*} x \left (1-3 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+9 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (3+9 x \right ) y&=0 \\ \end{align*}

0.331

4241

23698

\begin{align*} y^{\prime \prime }-y x&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.331

4242

1367

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.332

4243

2721

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime }&=t +\cos \left (t \right )+2 \,{\mathrm e}^{-2 t} \\ \end{align*}

0.332

4244

5576

\begin{align*} y^{2} {y^{\prime }}^{2}+2 y y^{\prime } x +x^{2}&=0 \\ \end{align*}

0.332

4245

12952

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 y^{2} \left (x +2 y\right )&=0 \\ \end{align*}

0.332

4246

15001

\begin{align*} x^{\prime }&=2 x \\ y^{\prime }&=-5 x-3 y \\ \end{align*}

0.332

4247

15752

\begin{align*} y_{1}^{\prime }&=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}

0.332

4248

18697

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.332

4249

18917

\begin{align*} y_{1}^{\prime }&=5 y_{1}-y_{2}+{\mathrm e}^{-t} \\ y_{2}^{\prime }&=y_{1}+3 y_{2}+2 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -3 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

0.332

4250

19856

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=\ln \left (x \right ) \\ \end{align*}

0.332

4251

22891

\begin{align*} x^{\prime }-2 y^{\prime }&={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }&=\sqrt {t} \\ \end{align*}

0.332

4252

23791

\begin{align*} x^{\prime }&=5 x-6 y \\ y^{\prime }&=6 x-7 y \\ \end{align*}

0.332

4253

24115

\begin{align*} y^{\prime }&=2 y \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.332

4254

25326

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.332

4255

25815

\begin{align*} y^{\prime }&=\sin \left (5 x \right ) \\ \end{align*}

0.332

4256

1087

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\ y \left (-3\right ) &= 1 \\ y^{\prime }\left (-3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=-3\).

0.333

4257

2054

\begin{align*} 4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.333

4258

3789

\begin{align*} y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+2 y&=8 x^{2} {\mathrm e}^{2 x} \\ \end{align*}

0.333

4259

10152

\begin{align*} 5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+y x&=0 \\ \end{align*}

0.333

4260

10335

\begin{align*} y^{\prime } t +y&=0 \\ y \left (0\right ) &= y_{0} \\ \end{align*}
Using Laplace transform method.

0.333

4261

10986

\begin{align*} 2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y&=0 \\ \end{align*}

0.333

4262

15245

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.333

4263

16791

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.333

4264

16817

\begin{align*} y^{\prime \prime }-12 y^{\prime }+45 y&=\delta \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.333

4265

16961

\begin{align*} 2 x -1-y^{\prime }&=0 \\ \end{align*}

0.333

4266

18650

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=4 x-2 y \\ \end{align*}

0.333

4267

18912

\begin{align*} y_{1}^{\prime }&=4 y_{1}-4 y_{2} \\ y_{2}^{\prime }&=5 y_{1}-4 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

0.333

4268

20488

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=\ln \left (x \right )^{2} \\ \end{align*}

0.333

4269

24118

\begin{align*} y^{\prime }-y&=x^{2}+1 \\ y \left (0\right ) &= -3 \\ \end{align*}
Series expansion around \(x=0\).

0.333

4270

3922

\begin{align*} x_{1}^{\prime }&=-4 x_{1} \\ x_{2}^{\prime }&=-4 x_{2} \\ \end{align*}

0.334

4271

5317

\begin{align*} x \left (-y x +1\right ) \left (1-y^{2} x^{2}\right ) y^{\prime }+\left (y x +1\right ) \left (1+y^{2} x^{2}\right ) y&=0 \\ \end{align*}

0.334

4272

8962

\begin{align*} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.334

4273

9132

\begin{align*} -\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}}&=0 \\ \end{align*}

0.334

4274

11067

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y&=0 \\ \end{align*}

0.334

4275

15013

\begin{align*} x^{\prime }&=7 x-4 y \\ y^{\prime }&=x+3 y \\ \end{align*}

0.334

4276

18913

\begin{align*} y_{1}^{\prime }&=6 y_{2} \\ y_{2}^{\prime }&=-6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 5 \\ y_{2} \left (0\right ) &= 4 \\ \end{align*}

0.334

4277

20445

\begin{align*} {y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 y x -2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y}&=0 \\ \end{align*}

0.334

4278

20447

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}&=1 \\ \end{align*}

0.334

4279

21643

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.334

4280

22179

\begin{align*} x^{3} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.334

4281

23650

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=25 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

0.334

4282

1483

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.335

4283

2231

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=9 x^{2} \\ y \left (1\right ) &= -7 \\ y^{\prime }\left (1\right ) &= -11 \\ y^{\prime \prime }\left (1\right ) &= -5 \\ y^{\prime \prime \prime }\left (1\right ) &= 6 \\ \end{align*}

0.335

4284

2425

\begin{align*} \left (1-t \right ) y^{\prime \prime }+y^{\prime } t +y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

0.335

4285

3792

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 \,{\mathrm e}^{2 x} \ln \left (x \right ) \\ \end{align*}

0.335

4286

5408

\begin{align*} {y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y&=0 \\ \end{align*}

0.335

4287

5694

\begin{align*} \sin \left (y^{\prime }\right )+y^{\prime }&=x \\ \end{align*}

0.335

4288

8609

\begin{align*} y^{\prime \prime }+k^{2} x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.335

4289

9063

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\ \end{align*}

0.335

4290

9259

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

0.335

4291

11020

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.335

4292

15999

\begin{align*} x^{\prime }&=3 x \\ y^{\prime }&=x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.335

4293

16784

\begin{align*} y^{\prime \prime }+4 y&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.335

4294

18656

\begin{align*} x^{\prime }&=5 x-y \\ y^{\prime }&=3 x+y \\ \end{align*}

0.335

4295

19653

\begin{align*} x^{\prime }&=-3 x+4 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

0.335

4296

22826

\begin{align*} y^{\prime \prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.335

4297

23651

\begin{align*} y^{\prime \prime }+13 y^{\prime }+36 y&=10-72 t \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.335

4298

23652

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=16 t \,{\mathrm e}^{-t}-15 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -9 \\ \end{align*}
Using Laplace transform method.

0.335

4299

23769

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.335

4300

1886

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.336