| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 6001 |
\begin{align*}
y^{\prime }+3 y+z&=0 \\
z^{\prime }+3 y+5 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 6002 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 6003 |
\begin{align*}
y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 6004 |
\begin{align*}
\left (x^{2}+2 x +1\right ) y^{\prime \prime }+\left (1-x \right ) y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6005 |
\begin{align*}
\left (1-y^{2} x^{2}\right ) y^{\prime }&=\left (y x +1\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6006 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=y \\
z^{\prime }&=z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6007 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=f \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6008 |
\begin{align*}
x^{\prime }&=-x+2 y \\
y^{\prime }&=2 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6009 |
\begin{align*}
y^{\prime } x&=2 x^{2}+1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6010 |
\begin{align*}
x^{\prime }&=\frac {\cos \left (t \right )}{\sin \left (t \right )} \\
x \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6011 |
\begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }+a x&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.487 |
|
| 6012 |
\begin{align*}
x^{\prime }-x-2 y&=0 \\
y^{\prime }-2 y-3 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6013 |
\begin{align*}
x^{\prime }-x+2 y^{\prime }+7 y&=3 t -15 \\
2 x^{\prime }+y^{\prime }+x+5 y&=9 t -7 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6014 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=x^{6} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6015 |
\begin{align*}
x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 6016 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
x_{3}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\
x_{4}^{\prime }&=x_{2}+x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 6017 |
\begin{align*}
y^{\prime }&=\cos \left (x \right )-\left (\sin \left (x \right )-y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.488 |
|
| 6018 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.488 |
|
| 6019 |
\begin{align*}
x^{\prime }&=-x+2 y \\
y^{\prime }&=2 x-4 y \\
z^{\prime }&=-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 6020 |
\begin{align*}
x^{\prime }&=12 x-15 y \\
y^{\prime }&=4 x-4 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 6021 |
\begin{align*}
3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.489 |
|
| 6022 |
\begin{align*}
\left (-3+y\right ) y^{\prime \prime }&=2 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.489 |
|
| 6023 |
\begin{align*}
y^{\prime \prime \prime }+a^{2} y^{\prime }&=\sin \left (a x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| 6024 |
\begin{align*}
x^{\prime }&=2 x+6 y+{\mathrm e}^{t} \\
y^{\prime }&=x+3 y-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| 6025 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6026 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6027 |
\begin{align*}
t y^{\prime \prime }+y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6028 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6029 |
\begin{align*}
y_{1}^{\prime }&=y_{1}+y_{2} \\
y_{2}^{\prime }&=y_{1}-y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6030 |
\begin{align*}
\frac {2 y x +1}{y}+\frac {\left (-x +y\right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.490 |
|
| 6031 |
\begin{align*}
2 y-y^{\prime } x +y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.490 |
|
| 6032 |
\begin{align*}
6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6033 |
\begin{align*}
x^{\prime }&=8 x-y \\
y^{\prime }&=x+6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6034 |
\begin{align*}
x^{\prime }&=2 x-5 y \\
y^{\prime }&=a x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6035 |
\begin{align*}
{y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.490 |
|
| 6036 |
\begin{align*}
y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+54 y^{\prime \prime }-108 y^{\prime }+81 y&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6037 |
\begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6038 |
\begin{align*}
y_{1}^{\prime }&=y_{2} \\
y_{2}^{\prime }&=-2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| 6039 |
\begin{align*}
y^{\prime \prime \prime \prime }+9 y^{\prime \prime }&=\left (x^{2}+1\right ) \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.491 |
|
| 6040 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.491 |
|
| 6041 |
\begin{align*}
x_{1}^{\prime }&=-19 x_{1}+12 x_{2}+84 x_{3} \\
x_{2}^{\prime }&=5 x_{2} \\
x_{3}^{\prime }&=-8 x_{1}+4 x_{2}+33 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| 6042 |
\begin{align*}
x_{1}^{\prime }&=-13 x_{1}+40 x_{2}-48 x_{3} \\
x_{2}^{\prime }&=-8 x_{1}+23 x_{2}-24 x_{3} \\
x_{3}^{\prime }&=3 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| 6043 |
\begin{align*}
{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| 6044 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.492 |
|
| 6045 |
\begin{align*}
\left (-y+y^{\prime } x \right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.492 |
|
| 6046 |
\begin{align*}
x^{\prime }+3 x-y&={\mathrm e}^{2 t} \\
y^{\prime }+x+5 y&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| 6047 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| 6048 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+\left (x -2\right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| 6049 |
\begin{align*}
\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| 6050 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +\alpha \left (\alpha +1\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| 6051 |
\begin{align*}
\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.493 |
|
| 6052 |
\begin{align*}
x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| 6053 |
\begin{align*}
x^{3} y^{\prime \prime }+\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.493 |
|
| 6054 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+{\mathrm e}^{x} y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| 6055 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}+4 x_{2} \\
x_{3}^{\prime }&=x_{1}+3 x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| 6056 |
\begin{align*}
y^{\prime }-4 y&=\frac {48 x}{y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| 6057 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +t^{2} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| 6058 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=4 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| 6059 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.494 |
|
| 6060 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (3-2 x \right ) y^{\prime }+\left (3 x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.495 |
|
| 6061 |
\begin{align*}
y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{v}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.495 |
|
| 6062 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.495 |
|
| 6063 |
\begin{align*}
\left (-x^{6}+1\right ) y^{\prime \prime }-12 x^{5} y^{\prime }-30 x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| 6064 |
\begin{align*}
\left (a +y\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.496 |
|
| 6065 |
\begin{align*}
x y y^{\prime \prime }&=y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y y^{\prime }+x {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.496 |
|
| 6066 |
\begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| 6067 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{-x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6068 |
\begin{align*}
x^{\prime }&=y+z \\
y^{\prime }&=x+z \\
z^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6069 |
\begin{align*}
\left (3 x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6070 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right )+\cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6071 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y&=\cosh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6072 |
\begin{align*}
16 \left (x +1\right )^{2} y^{\prime \prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.497 |
|
| 6073 |
\begin{align*}
{y^{\prime }}^{2}+a y^{\prime }+b x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6074 |
\begin{align*}
x^{\prime }&=-3 x+2 y \\
y^{\prime }&=-x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6075 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}-b^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.497 |
|
| 6076 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6077 |
\begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=16 \,{\mathrm e}^{2 x} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| 6078 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6079 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6080 |
\begin{align*}
\left (x -2 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6081 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-y x&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6082 |
\begin{align*}
x^{\prime }&=7 x+6 y \\
y^{\prime }&=2 x+6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6083 |
\begin{align*}
y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6084 |
\begin{align*}
x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.498 |
|
| 6085 |
\begin{align*}
x^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6086 |
\begin{align*}
y^{\prime }-3 y&=6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6087 |
\begin{align*}
x^{\prime }&=2 x-3 y+t \,{\mathrm e}^{-t} \\
y^{\prime }&=2 x-3 y+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6088 |
\begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=9 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6089 |
\begin{align*}
y^{\prime }+a y&=b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| 6090 |
\begin{align*}
3 y y^{\prime }+y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y-y^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.499 |
|
| 6091 |
\begin{align*}
y^{\prime \prime }&=x^{-2+n} f \left (y x^{-n}, x^{1-n} y^{\prime }\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.499 |
|
| 6092 |
\begin{align*}
2 x^{2} y y^{\prime \prime }&=-4 y^{2}+2 y y^{\prime } x +x^{2} {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.499 |
|
| 6093 |
\begin{align*}
y^{\prime \prime }+\left (x -6\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.499 |
|
| 6094 |
\begin{align*}
x^{\prime }&=-x-2 y \\
y^{\prime }&=4 x-5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.499 |
|
| 6095 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+3 y^{\prime } x +y x&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.499 |
|
| 6096 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.499 |
|
| 6097 |
\begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }-\left (x^{2}-4\right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| 6098 |
\begin{align*}
\left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} Series expansion around \(z=0\). |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| 6099 |
\begin{align*}
y^{\prime }&=3 \cos \left (y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| 6100 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.500 |
|