| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 6201 |
\begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 10 \\
x_{2} \left (0\right ) &= 12 \\
x_{3} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6202 |
\begin{align*}
y^{\prime \prime }+\left (\cos \left (x \right )+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6203 |
\begin{align*}
10 y^{\prime }+8 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.513 |
|
| 6204 |
\begin{align*}
y^{\prime }&=2 x^{2}+3 y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6205 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6206 |
\begin{align*}
2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.513 |
|
| 6207 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.513 |
|
| 6208 |
\begin{align*}
4 x^{\prime }+9 y^{\prime }+11 x+31 y&={\mathrm e}^{t} \\
3 x^{\prime }+7 y^{\prime }+8 x+24 y&={\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6209 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=3 x-2 y \\
z^{\prime }&=2 y+3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6210 |
\begin{align*}
2 x^{\prime }+y^{\prime }-x-y&=-2 t \\
x^{\prime }+y^{\prime }+x-y&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6211 |
\begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=-3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6212 |
\begin{align*}
x^{\prime }-y&=3 \\
y^{\prime }-3 x^{\prime }&=-2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6213 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6214 |
\begin{align*}
n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| 6215 |
\begin{align*}
\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| 6216 |
\begin{align*}
y+y^{\prime }&=t \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| 6217 |
\begin{align*}
x^{\prime }&=2 x-6 y \\
y^{\prime }&=2 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| 6218 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x}&=x \,{\mathrm e}^{2 x}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.514 |
|
| 6219 |
\begin{align*}
x^{\prime }&=1+x \\
y^{\prime }&=x+3 y-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| 6220 |
\begin{align*}
y^{\prime \prime }+\left (x -1\right ) y&={\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
0.514 |
|
| 6221 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.515 |
|
| 6222 |
\begin{align*}
y^{\prime }&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.515 |
|
| 6223 |
\begin{align*}
y^{\prime }&=2 \cos \left (x \right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.515 |
|
| 6224 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| 6225 |
\begin{align*}
5 y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| 6226 |
\begin{align*}
2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.516 |
|
| 6227 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.516 |
|
| 6228 |
\begin{align*}
y^{\prime \prime } x +4 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| 6229 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.516 |
|
| 6230 |
\begin{align*}
y^{\prime }+4 y&=8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| 6231 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| 6232 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| 6233 |
\begin{align*}
x^{\prime }&=4 x+y \\
y^{\prime }&=4 y+z \\
z^{\prime }&=4 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| 6234 |
\begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| 6235 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.517 |
|
| 6236 |
\begin{align*}
x^{\prime }&=2 x-\frac {5 y}{2} \\
y^{\prime }&=\frac {9 x}{5}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| 6237 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+3 x_{2}+7 x_{3} \\
x_{2}^{\prime }&=-x_{2}-4 x_{3} \\
x_{3}^{\prime }&=x_{2}+3 x_{3} \\
x_{4}^{\prime }&=-6 x_{2}-14 x_{3}+x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6238 |
\begin{align*}
x_{1}^{\prime }&=7 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=x_{1}+4 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6239 |
\begin{align*}
y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6240 |
\begin{align*}
2 y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6241 |
\begin{align*}
y^{\prime } x +y&=\cos \left (x \right )+\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.518 |
|
| 6242 |
\begin{align*}
4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.518 |
|
| 6243 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6244 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.518 |
|
| 6245 |
\begin{align*}
y^{\prime }-4 y&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6246 |
\begin{align*}
x^{\prime }&=5 x+4 y \\
y^{\prime }&=8 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6247 |
\begin{align*}
y^{\prime \prime }+\frac {y}{4 x^{2}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6248 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=6 x_{1} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (1\right ) &= 1 \\
x_{2} \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6249 |
\begin{align*}
N_{1}^{\prime }&=4 N_{1}-6 N_{2} \\
N_{2}^{\prime }&=8 N_{1}-10 N_{2} \\
\end{align*} With initial conditions \begin{align*}
N_{1} \left (0\right ) &= 100000 \\
N_{2} \left (0\right ) &= 1000 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| 6250 |
\begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| 6251 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| 6252 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.519 |
|
| 6253 |
\begin{align*}
{y^{\prime }}^{2}+\left (a +x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| 6254 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| 6255 |
\begin{align*}
x^{\prime }&=5 x-6 y+1 \\
y^{\prime }&=6 x-7 y+1 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| 6256 |
\begin{align*}
x_{1}^{\prime }&=-15 x_{1}-7 x_{2}+4 x_{3} \\
x_{2}^{\prime }&=34 x_{1}+16 x_{2}-11 x_{3} \\
x_{3}^{\prime }&=17 x_{1}+7 x_{2}+5 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6257 |
\begin{align*}
y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y&=0 \\
y \left (3\right ) &= -2 \\
y^{\prime }\left (3\right ) &= 3 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6258 |
\begin{align*}
\left (1+3 x \right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6259 |
\begin{align*}
y^{\prime }&=\sin \left (t \right )^{2} \\
y \left (\frac {\pi }{6}\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6260 |
\begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6261 |
\begin{align*}
y^{\prime }&=\left (-1+y\right )^{2}+\frac {1}{100} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.520 |
|
| 6262 |
\begin{align*}
y^{\prime }-2 y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6263 |
\begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6264 |
\begin{align*}
x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.520 |
|
| 6265 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.520 |
|
| 6266 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.520 |
|
| 6267 |
\begin{align*}
y^{\prime \prime } x -\left (x^{2}+2\right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6268 |
\begin{align*}
x^{\prime }+5 x-2 y&=0 \\
2 x+y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6269 |
\begin{align*}
\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6270 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 4 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6271 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-9 x+6 y+t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6272 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| 6273 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}-2 x_{2}+\frac {1}{t^{3}} \\
x_{2}^{\prime }&=8 x_{1}-4 x_{2}-\frac {1}{t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.521 |
|
| 6274 |
\begin{align*}
2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.521 |
|
| 6275 |
\begin{align*}
x^{\prime }&=-2 x+3 y \\
y^{\prime }&=3 x-2 y \\
z^{\prime }&=-z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.521 |
|
| 6276 |
\begin{align*}
y^{\prime }-4 y&=-8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.521 |
|
| 6277 |
\begin{align*}
y^{\prime }&={\mathrm e}^{2 t} t \\
y \left (1\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| 6278 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| 6279 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}-8 \\
x_{2}^{\prime }&=x_{1}+x_{2}+3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| 6280 |
\begin{align*}
{y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| 6281 |
\begin{align*}
y^{\prime }&=2 y+1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| 6282 |
\begin{align*}
2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=10 c +\frac {10}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| 6283 |
\begin{align*}
x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| 6284 |
\begin{align*}
y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.523 |
|
| 6285 |
\begin{align*}
\left (x -2\right )^{3} y^{\prime \prime }+3 \left (x -2\right )^{2} y^{\prime }+x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6286 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2} \\
x_{2}^{\prime }&=x_{2} \\
x_{3}^{\prime }&=2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6287 |
\begin{align*}
4 x^{2} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6288 |
\begin{align*}
f \left (x \right )^{2} y^{\prime \prime }&=-24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.523 |
|
| 6289 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6290 |
\begin{align*}
y^{\prime }&=\ln \left (x \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6291 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.523 |
|
| 6292 |
\begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=x+5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6293 |
\begin{align*}
y^{\prime }&=\frac {1}{2 y+3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6294 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+4 y&=y^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.523 |
|
| 6295 |
\begin{align*}
y^{\prime \prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6296 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6297 |
\begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6298 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right )+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6299 |
\begin{align*}
x^{\prime }-y&=t \\
x+y^{\prime }&=t^{2} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| 6300 |
\begin{align*}
y^{\prime }&=2-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.523 |
|