| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 6901 |
\begin{align*}
{y^{\prime }}^{3}+y y^{\prime } x&=2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.594 |
|
| 6902 |
\begin{align*}
y^{\prime }+4 \csc \left (x \right )&=\left (3-\cot \left (x \right )\right ) y+\sin \left (x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.594 |
|
| 6903 |
\begin{align*}
16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.594 |
|
| 6904 |
\begin{align*}
\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| 6905 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| 6906 |
\begin{align*}
4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.594 |
|
| 6907 |
\begin{align*}
x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.594 |
|
| 6908 |
\begin{align*}
x^{\prime }&=x+2 y+4 \\
y^{\prime }&=-2 x+y-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| 6909 |
\begin{align*}
x^{\prime }&=x+3 y+a \\
y^{\prime }&=x-y+b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| 6910 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| 6911 |
\begin{align*}
x^{\prime }&=-2 x+y+z \\
y^{\prime }&=-3 x+2 y+3 z \\
z^{\prime }&=x-y-2 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6912 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1} \\
x_{2}^{\prime }&=x_{1}+4 x_{2} \\
x_{3}^{\prime }&=x_{2}+4 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6913 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{2}+t \,{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=3 x_{2}+{\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6914 |
\begin{align*}
2 y^{\prime \prime } x +5 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6915 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6916 |
\begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.595 |
|
| 6917 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6918 |
\begin{align*}
a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.595 |
|
| 6919 |
\begin{align*}
x^{\prime }&=5 x-4 y+{\mathrm e}^{3 t} \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6920 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=\left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6921 |
\begin{align*}
\left (-x^{2}+4\right ) y^{\prime \prime }-5 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6922 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=z-x \\
z^{\prime }&=x+3 y+z \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
z \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6923 |
\begin{align*}
t^{2} y^{\prime \prime }+2 y^{\prime } t +t^{2} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| 6924 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| 6925 |
\begin{align*}
y^{\prime \prime }-y x&=\frac {1}{1-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.596 |
|
| 6926 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| 6927 |
\begin{align*}
9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.597 |
|
| 6928 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=3 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.597 |
|
| 6929 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1-\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.597 |
|
| 6930 |
\begin{align*}
x^{\prime }&=3 x-5 y \\
y^{\prime }&=4 x-5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.597 |
|
| 6931 |
\begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.597 |
|
| 6932 |
\begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=\sin \left (x \right )+\cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6933 |
\begin{align*}
4 y^{\prime \prime } x +8 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6934 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-4 x^{2}+3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6935 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6936 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6937 |
\begin{align*}
3 {y^{\prime }}^{5}-y y^{\prime }+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.598 |
|
| 6938 |
\begin{align*}
y y^{\prime \prime }&=y^{2} y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.598 |
|
| 6939 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.598 |
|
| 6940 |
\begin{align*}
x^{\prime }&=a x+b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6941 |
\begin{align*}
x^{\prime }&=4 x+2 y \\
y^{\prime }&=3 x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -21 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6942 |
\begin{align*}
6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6943 |
\begin{align*}
x^{\prime }&=3 x+y+{\mathrm e}^{t} \\
y^{\prime }&=x+3 y-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| 6944 |
\begin{align*}
y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x \left (x +1\right )}-\frac {y}{x \left (x +1\right )}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6945 |
\begin{align*}
4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.599 |
|
| 6946 |
\begin{align*}
x^{3} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.599 |
|
| 6947 |
\begin{align*}
f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.599 |
|
| 6948 |
\begin{align*}
\left (3 y-1\right )^{2} {y^{\prime }}^{2}&=4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.599 |
|
| 6949 |
\begin{align*}
t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6950 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.599 |
|
| 6951 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=\frac {\pi }{2}\). |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6952 |
\begin{align*}
x^{\prime }&=3 x+2 y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= a_{1} \\
y \left (0\right ) &= a_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6953 |
\begin{align*}
4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6954 |
\begin{align*}
3 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6955 |
\begin{align*}
\left (x^{2}-\frac {1}{4}\right ) y^{\prime \prime }+2 y^{\prime }-6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6956 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=x-3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6957 |
\begin{align*}
y^{\prime }-a \left (t \right ) y&=\delta \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| 6958 |
\begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| 6959 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| 6960 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -2} \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| 6961 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.600 |
|
| 6962 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| 6963 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| 6964 |
\begin{align*}
x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| 6965 |
\begin{align*}
4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| 6966 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.601 |
|
| 6967 |
\begin{align*}
\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.601 |
|
| 6968 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| 6969 |
\begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=6 x_{1}+4 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (1\right ) &= 0 \\
x_{2} \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| 6970 |
\begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=17 x-7 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| 6971 |
\begin{align*}
x_{1}^{\prime }&=-\frac {x_{1}}{4}+x_{2} \\
x_{2}^{\prime }&=-x_{1}-\frac {x_{2}}{4} \\
x_{3}^{\prime }&=-\frac {x_{3}}{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| 6972 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=4 \,{\mathrm e}^{-x} \left (1-6 x \right )-2 \cos \left (x \right ) x +2 \left (x +1\right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| 6973 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| 6974 |
\begin{align*}
\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| 6975 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| 6976 |
\begin{align*}
2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.602 |
|
| 6977 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.602 |
|
| 6978 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.602 |
|
| 6979 |
\begin{align*}
y^{\prime \prime \prime \prime }-81 y&=\sinh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| 6980 |
\begin{align*}
t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| 6981 |
\begin{align*}
x^{3} y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.603 |
|
| 6982 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= -2 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| 6983 |
\begin{align*}
4 t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6984 |
\begin{align*}
3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6985 |
\begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=3 x^{2} \tan \left (x \right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6986 |
\begin{align*}
x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6987 |
\begin{align*}
\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6988 |
\begin{align*}
y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6989 |
\begin{align*}
x^{\prime }&=4 x-13 y \\
y^{\prime }&=2 x-6 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6990 |
\begin{align*}
x^{\prime }+x+y^{\prime }+y&=0 \\
x^{\prime }-y^{\prime }-y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| 6991 |
\begin{align*}
x^{\prime }&=4 x+y+2 t \\
y^{\prime }&=-2 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| 6992 |
\begin{align*}
g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.605 |
|
| 6993 |
\begin{align*}
-y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.605 |
|
| 6994 |
\begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.605 |
|
| 6995 |
\begin{align*}
y^{\prime }&=1-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| 6996 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sec \left (t \right )^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
0.605 |
|
| 6997 |
\begin{align*}
x^{\prime }&=3 x+5 y \\
y^{\prime }&=-x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| 6998 |
\begin{align*}
s^{2} t^{\prime \prime }+s t t^{\prime }&=s \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.605 |
|
| 6999 |
\begin{align*}
\left (2 x +3\right ) y^{\prime \prime }+3 y^{\prime }-y x&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= -3 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
0.606 |
|
| 7000 |
\begin{align*}
t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.606 |
|