| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 9701 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.107 |
|
| 9702 |
\begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.107 |
|
| 9703 |
\begin{align*}
2 x^{\prime }-3 x-2 y^{\prime }&=t \\
2 x^{\prime }+3 x+2 y^{\prime }+8 y&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.107 |
|
| 9704 |
\begin{align*}
3 y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t <\infty \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✗ |
✓ |
✗ |
1.107 |
|
| 9705 |
\begin{align*}
4 y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.108 |
|
| 9706 |
\begin{align*}
y^{\prime }&=\frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 9707 |
\begin{align*}
y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.108 |
|
| 9708 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| 9709 |
\begin{align*}
y \left (1+{y^{\prime }}^{2}\right )&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| 9710 |
\begin{align*}
t^{2} x^{\prime \prime }-6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| 9711 |
\begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| 9712 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\
x_{3}^{\prime }&=3 x_{2}+3 x_{3} \\
x_{4}^{\prime }&=4 x_{3}+4 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.110 |
|
| 9713 |
\begin{align*}
y&=y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.110 |
|
| 9714 |
\begin{align*}
2 y y^{\prime \prime }&=3 y^{4}+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.110 |
|
| 9715 |
\begin{align*}
x^{\prime }&=-x+y+1 \\
y^{\prime }&=x+y-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.110 |
|
| 9716 |
\begin{align*}
x^{\prime }+y^{\prime }-y&=0 \\
y^{\prime }+2 y+z^{\prime }+2 z&=2 \\
x+z^{\prime }-z&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
z \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.110 |
|
| 9717 |
\begin{align*}
x^{\prime }&=6 x-7 y+10 \\
y^{\prime }&=x-2 y-2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.111 |
|
| 9718 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.111 |
|
| 9719 |
\begin{align*}
y_{1}^{\prime }&=2 y_{2} \\
y_{2}^{\prime }&=3 y_{1} \\
y_{3}^{\prime }&=2 y_{3}-y_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.111 |
|
| 9720 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 9721 |
\begin{align*}
8 x^{2} y^{\prime \prime }+10 y^{\prime } x -\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 9722 |
\begin{align*}
\frac {y^{\prime }}{y}&=-t +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| 9723 |
\begin{align*}
y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.114 |
|
| 9724 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=z \\
z^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.114 |
|
| 9725 |
\begin{align*}
y^{\prime }-y x&=x^{3} y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 9726 |
\begin{align*}
y^{\prime }&=\frac {y}{x}+2 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 9727 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x -7 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 9728 |
\begin{align*}
y^{\prime }&=3 y+{\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| 9729 |
\begin{align*}
-y+2 y^{\prime }&={\mathrm e}^{\frac {t}{3}} \\
y \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.116 |
|
| 9730 |
\begin{align*}
2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.116 |
|
| 9731 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=\delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.116 |
|
| 9732 |
\begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.116 |
|
| 9733 |
\begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.117 |
|
| 9734 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.117 |
|
| 9735 |
\begin{align*}
4 \left (x -4\right )^{2} y^{\prime \prime }+\left (x -4\right ) \left (x -8\right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=4\). |
✓ |
✓ |
✓ |
✓ |
1.118 |
|
| 9736 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.118 |
|
| 9737 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.118 |
|
| 9738 |
\begin{align*}
y^{\prime \prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.118 |
|
| 9739 |
\begin{align*}
y^{\prime }-2 t y&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| 9740 |
\begin{align*}
y {y^{\prime }}^{2}+y&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| 9741 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| 9742 |
\begin{align*}
x^{\prime }&=-x-y \\
y^{\prime }&=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\
z^{\prime }&=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| 9743 |
\begin{align*}
x^{\prime }-2 x+y^{\prime }-2 y&=1 \\
y^{\prime }+z^{\prime }+z&=2 \\
3 x+z^{\prime }+z&=3 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
z \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| 9744 |
\begin{align*}
y^{\prime \prime }+y&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| 9745 |
\begin{align*}
y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.120 |
|
| 9746 |
\begin{align*}
f \left (t \right ) x^{\prime \prime }+x g \left (t \right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.120 |
|
| 9747 |
\begin{align*}
y&=\frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.120 |
|
| 9748 |
\begin{align*}
y y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.120 |
|
| 9749 |
\begin{align*}
y^{\prime }&=y \left (y+t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.120 |
|
| 9750 |
\begin{align*}
x^{\prime \prime }+6 x^{\prime }+8 x&=f \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.121 |
|
| 9751 |
\begin{align*}
x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.121 |
|
| 9752 |
\begin{align*}
y^{\prime \prime }-a {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.121 |
|
| 9753 |
\begin{align*}
y+3 y^{\prime } x +2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.121 |
|
| 9754 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.121 |
|
| 9755 |
\begin{align*}
4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.121 |
|
| 9756 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -\left (-x^{2}+3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9757 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9758 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t}+3 \delta \left (t -3\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9759 |
\begin{align*}
4 x^{2} y^{\prime \prime }+8 x \left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9760 |
\begin{align*}
x^{2} y^{\prime \prime }+3 x \left (x +1\right ) y^{\prime }+\left (1-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9761 |
\begin{align*}
y^{\prime }&=y+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9762 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{2}-x_{3} \\
x_{2}^{\prime }&=x_{1}-x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}-2 x_{2}-2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9763 |
\begin{align*}
x^{\prime }&=\frac {x^{2}+x}{2 x+1} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.122 |
|
| 9764 |
\begin{align*}
x^{\prime }&=4 x+5 y+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\
y^{\prime }&=-2 x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| 9765 |
\begin{align*}
y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| 9766 |
\begin{align*}
y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.123 |
|
| 9767 |
\begin{align*}
x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| 9768 |
\begin{align*}
x \left (2+x \right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.125 |
|
| 9769 |
\begin{align*}
-y x -\left (2 x^{2}+1\right ) y^{\prime }+2 y^{\prime \prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.125 |
|
| 9770 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-3 x_{2}+34 \sin \left (t \right ) \\
x_{2}^{\prime }&=-4 x_{1}-2 x_{2}+17 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| 9771 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| 9772 |
\begin{align*}
2 \left (1-y\right ) y y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.126 |
|
| 9773 |
\begin{align*}
2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.127 |
|
| 9774 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.127 |
|
| 9775 |
\begin{align*}
y^{\prime }&=-\frac {2 x y}{x^{2}+1} \\
y \left (2\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.127 |
|
| 9776 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.127 |
|
| 9777 |
\begin{align*}
9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.127 |
|
| 9778 |
\begin{align*}
y^{\prime }&=2 y-4 \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.128 |
|
| 9779 |
\begin{align*}
u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.128 |
|
| 9780 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (\theta \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.128 |
|
| 9781 |
\begin{align*}
x^{\prime }&=a x+b y \\
y^{\prime }&=c x+d y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.128 |
|
| 9782 |
\begin{align*}
x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.129 |
|
| 9783 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| 9784 |
\begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| 9785 |
\begin{align*}
4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.131 |
|
| 9786 |
\begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.131 |
|
| 9787 |
\begin{align*}
y^{\prime }-2 y&=3 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 9788 |
\begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 9789 |
\begin{align*}
2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 9790 |
\begin{align*}
y^{\prime }&=3 y+{\mathrm e}^{7 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| 9791 |
\begin{align*}
y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.132 |
|
| 9792 |
\begin{align*}
9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.133 |
|
| 9793 |
\begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| 9794 |
\begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) x \right ) y^{\prime }-\alpha \beta y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.134 |
|
| 9795 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1} \\
x_{2}^{\prime }&=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\
x_{3}^{\prime }&=5 x_{3} \\
x_{4}^{\prime }&=-21 x_{3}-2 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.135 |
|
| 9796 |
\begin{align*}
t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.135 |
|
| 9797 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}+a^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.135 |
|
| 9798 |
\begin{align*}
y-\frac {y^{\prime } x}{2}-\frac {x}{2 y^{\prime }}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.135 |
|
| 9799 |
\begin{align*}
x^{\prime }+4 x+2 y-z&=12 \,{\mathrm e}^{t} \\
y^{\prime }-2 x-5 y+3 z&=0 \\
z^{\prime }+4 x+z&=30 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.135 |
|
| 9800 |
\begin{align*}
y^{\prime \prime }+y&=12 \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.135 |
|