2.3.98 Problems 9701 to 9800

Table 2.727: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

9701

271

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

1.107

9702

14159

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

1.107

9703

21592

\begin{align*} 2 x^{\prime }-3 x-2 y^{\prime }&=t \\ 2 x^{\prime }+3 x+2 y^{\prime }+8 y&=2 \\ \end{align*}

1.107

9704

25288

\begin{align*} 3 y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.107

9705

10686

\begin{align*} 4 y^{\prime \prime }+y^{\prime } x +4 y&=0 \\ \end{align*}

1.108

9706

15904

\begin{align*} y^{\prime }&=\frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

1.108

9707

20017

\begin{align*} y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

1.108

9708

22163

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.108

9709

3296

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 \\ \end{align*}

1.109

9710

14199

\begin{align*} t^{2} x^{\prime \prime }-6 x&=0 \\ \end{align*}

1.109

9711

15534

\begin{align*} y^{\prime }&=x +y \\ \end{align*}

1.109

9712

991

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\ x_{3}^{\prime }&=3 x_{2}+3 x_{3} \\ x_{4}^{\prime }&=4 x_{3}+4 x_{4} \\ \end{align*}

1.110

9713

3328

\begin{align*} y&=y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \\ \end{align*}

1.110

9714

6476

\begin{align*} 2 y y^{\prime \prime }&=3 y^{4}+{y^{\prime }}^{2} \\ \end{align*}

1.110

9715

18641

\begin{align*} x^{\prime }&=-x+y+1 \\ y^{\prime }&=x+y-3 \\ \end{align*}

1.110

9716

21924

\begin{align*} x^{\prime }+y^{\prime }-y&=0 \\ y^{\prime }+2 y+z^{\prime }+2 z&=2 \\ x+z^{\prime }-z&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ \end{align*}

1.110

9717

9986

\begin{align*} x^{\prime }&=6 x-7 y+10 \\ y^{\prime }&=x-2 y-2 \,{\mathrm e}^{t} \\ \end{align*}

1.111

9718

15662

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

1.111

9719

15750

\begin{align*} y_{1}^{\prime }&=2 y_{2} \\ y_{2}^{\prime }&=3 y_{1} \\ y_{3}^{\prime }&=2 y_{3}-y_{1} \\ \end{align*}

1.111

9720

4038

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.112

9721

9865

\begin{align*} 8 x^{2} y^{\prime \prime }+10 y^{\prime } x -\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.112

9722

24951

\begin{align*} \frac {y^{\prime }}{y}&=-t +y \\ \end{align*}

1.112

9723

9963

\begin{align*} y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.114

9724

22900

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=z \\ z^{\prime }&=x \\ \end{align*}

1.114

9725

1633

\begin{align*} y^{\prime }-y x&=x^{3} y^{3} \\ \end{align*}

1.115

9726

7425

\begin{align*} y^{\prime }&=\frac {y}{x}+2 x +1 \\ \end{align*}

1.115

9727

17719

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x -7 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.115

9728

25406

\begin{align*} y^{\prime }&=3 y+{\mathrm e}^{3 t} \\ \end{align*}

1.115

9729

1119

\begin{align*} -y+2 y^{\prime }&={\mathrm e}^{\frac {t}{3}} \\ y \left (0\right ) &= a \\ \end{align*}

1.116

9730

6972

\begin{align*} 2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 x} \\ \end{align*}

1.116

9731

16816

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\delta \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.116

9732

22036

\begin{align*} y^{\prime } x -y+y^{2}&=0 \\ \end{align*}

1.116

9733

5488

\begin{align*} 4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

1.117

9734

10754

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

1.117

9735

9899

\begin{align*} 4 \left (x -4\right )^{2} y^{\prime \prime }+\left (x -4\right ) \left (x -8\right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=4\).

1.118

9736

14372

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.118

9737

19168

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }&=2 y \\ \end{align*}

1.118

9738

22147

\begin{align*} y^{\prime \prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

1.118

9739

2484

\begin{align*} y^{\prime }-2 t y&=1 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.119

9740

5554

\begin{align*} y {y^{\prime }}^{2}+y&=a \\ \end{align*}

1.119

9741

8241

\begin{align*} y^{\prime }&=y^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}

1.119

9742

9680

\begin{align*} x^{\prime }&=-x-y \\ y^{\prime }&=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\ z^{\prime }&=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \\ \end{align*}

1.119

9743

21896

\begin{align*} x^{\prime }-2 x+y^{\prime }-2 y&=1 \\ y^{\prime }+z^{\prime }+z&=2 \\ 3 x+z^{\prime }+z&=3 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ \end{align*}

1.119

9744

22808

\begin{align*} y^{\prime \prime }+y&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

1.119

9745

12295

\begin{align*} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y&=0 \\ \end{align*}

1.120

9746

14843

\begin{align*} f \left (t \right ) x^{\prime \prime }+x g \left (t \right )&=0 \\ \end{align*}

1.120

9747

18015

\begin{align*} y&=\frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }} \\ \end{align*}

1.120

9748

20562

\begin{align*} y y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

1.120

9749

24937

\begin{align*} y^{\prime }&=y \left (y+t \right ) \\ \end{align*}

1.120

9750

574

\begin{align*} x^{\prime \prime }+6 x^{\prime }+8 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.121

9751

18348

\begin{align*} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }}&=0 \\ \end{align*}

1.121

9752

20134

\begin{align*} y^{\prime \prime }-a {y^{\prime }}^{2}&=0 \\ \end{align*}

1.121

9753

20768

\begin{align*} y+3 y^{\prime } x +2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.121

9754

21496

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

1.121

9755

24852

\begin{align*} 4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\ \end{align*}

1.121

9756

2092

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -\left (-x^{2}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.122

9757

2103

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.122

9758

2696

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t}+3 \delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

1.122

9759

9904

\begin{align*} 4 x^{2} y^{\prime \prime }+8 x \left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.122

9760

9905

\begin{align*} x^{2} y^{\prime \prime }+3 x \left (x +1\right ) y^{\prime }+\left (1-3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.122

9761

15944

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-t} \\ \end{align*}

1.122

9762

19007

\begin{align*} x_{1}^{\prime }&=-2 x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}-x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}-2 x_{2}-2 x_{3} \\ \end{align*}

1.122

9763

21052

\begin{align*} x^{\prime }&=\frac {x^{2}+x}{2 x+1} \\ x \left (0\right ) &= 1 \\ \end{align*}

1.122

9764

2705

\begin{align*} x^{\prime }&=4 x+5 y+4 \,{\mathrm e}^{t} \cos \left (t \right ) \\ y^{\prime }&=-2 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

1.123

9765

9902

\begin{align*} y^{\prime \prime } x +\left (-x^{2}+1\right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.123

9766

10520

\begin{align*} y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y&=0 \\ \end{align*}

1.123

9767

16917

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.123

9768

8103

\begin{align*} x \left (2+x \right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.125

9769

9875

\begin{align*} -y x -\left (2 x^{2}+1\right ) y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.125

9770

3879

\begin{align*} x_{1}^{\prime }&=2 x_{1}-3 x_{2}+34 \sin \left (t \right ) \\ x_{2}^{\prime }&=-4 x_{1}-2 x_{2}+17 \cos \left (t \right ) \\ \end{align*}

1.126

9771

9949

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.126

9772

13002

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right )&=0 \\ \end{align*}

1.126

9773

9431

\begin{align*} 2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.127

9774

9906

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.127

9775

22026

\begin{align*} y^{\prime }&=-\frac {2 x y}{x^{2}+1} \\ y \left (2\right ) &= -5 \\ \end{align*}

1.127

9776

22282

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

1.127

9777

24838

\begin{align*} 9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\ \end{align*}

1.127

9778

3424

\begin{align*} y^{\prime }&=2 y-4 \\ y \left (0\right ) &= 5 \\ \end{align*}

1.128

9779

11157

\begin{align*} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u&=0 \\ \end{align*}

1.128

9780

21128

\begin{align*} x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (\theta \right ) &= 0 \\ \end{align*}

1.128

9781

23783

\begin{align*} x^{\prime }&=a x+b y \\ y^{\prime }&=c x+d y \\ \end{align*}

1.128

9782

3306

\begin{align*} x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

1.129

9783

16483

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.129

9784

19135

\begin{align*} x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

1.129

9785

9962

\begin{align*} 4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (1+3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.131

9786

25475

\begin{align*} y^{\prime }&=-y^{2}+y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

1.131

9787

74

\begin{align*} y^{\prime }-2 y&=3 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.132

9788

5587

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

1.132

9789

8086

\begin{align*} 2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

1.132

9790

15947

\begin{align*} y^{\prime }&=3 y+{\mathrm e}^{7 t} \\ \end{align*}

1.132

9791

17197

\begin{align*} y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime }&=0 \\ \end{align*}

1.132

9792

10587

\begin{align*} 9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y&=0 \\ \end{align*}

1.133

9793

19867

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

1.133

9794

497

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\gamma -\left (\alpha +\beta +1\right ) x \right ) y^{\prime }-\alpha \beta y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.134

9795

649

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\ x_{3}^{\prime }&=5 x_{3} \\ x_{4}^{\prime }&=-21 x_{3}-2 x_{4} \\ \end{align*}

1.135

9796

10671

\begin{align*} t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y&=0 \\ \end{align*}

1.135

9797

20438

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}+a^{4}&=0 \\ \end{align*}

1.135

9798

21562

\begin{align*} y-\frac {y^{\prime } x}{2}-\frac {x}{2 y^{\prime }}&=0 \\ \end{align*}

1.135

9799

22946

\begin{align*} x^{\prime }+4 x+2 y-z&=12 \,{\mathrm e}^{t} \\ y^{\prime }-2 x-5 y+3 z&=0 \\ z^{\prime }+4 x+z&=30 \,{\mathrm e}^{-t} \\ \end{align*}

1.135

9800

24559

\begin{align*} y^{\prime \prime }+y&=12 \cos \left (x \right )^{2} \\ \end{align*}

1.135