2.3.115 Problems 11401 to 11500

Table 2.761: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

11401

15946

\begin{align*} y^{\prime }&=t y \\ \end{align*}

1.706

11402

23195

\begin{align*} x^{2}-2 y+y^{\prime } x&=0 \\ \end{align*}

1.707

11403

23453

\begin{align*} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.708

11404

4218

\begin{align*} y^{\prime } x&=y \\ \end{align*}

1.709

11405

23758

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

1.709

11406

14645

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=4 x \,{\mathrm e}^{-3 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

1.710

11407

16566

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\ \end{align*}

1.710

11408

65

\begin{align*} -y+y^{\prime } x&=2 x^{2} y \\ y \left (1\right ) &= 1 \\ \end{align*}

1.711

11409

7312

\begin{align*} 2 y y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

1.711

11410

8394

\begin{align*} y^{\prime }&=\frac {1}{-3+y} \\ y \left (1\right ) &= 2 \\ \end{align*}

1.711

11411

15872

\begin{align*} w^{\prime }&=w \cos \left (w\right ) \\ \end{align*}

1.711

11412

25455

\begin{align*} y^{\prime }&=t^{2}+y \\ y \left (0\right ) &= 1 \\ \end{align*}

1.711

11413

1115

\begin{align*} 2 y+y^{\prime } t&=\sin \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

1.712

11414

22208

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.712

11415

2308

\begin{align*} t y+y^{\prime }&=1+t \\ y \left (\frac {3}{2}\right ) &= 0 \\ \end{align*}

1.713

11416

13355

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \\ \end{align*}

1.713

11417

24860

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

1.713

11418

25018

\begin{align*} 2 y y^{\prime }&=y^{2}+t -1 \\ \end{align*}

1.713

11419

25024

\begin{align*} 2 y y^{\prime }&=y^{2}+t -1 \\ \end{align*}

1.713

11420

8334

\begin{align*} y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\ \end{align*}

1.714

11421

15393

\begin{align*} y&=y^{\prime } x +\sqrt {1-{y^{\prime }}^{2}} \\ \end{align*}

1.714

11422

22588

\begin{align*} y^{\prime }&=y \left (x +y\right ) \\ \end{align*}

1.714

11423

23905

\begin{align*} y^{\prime }+3 y&=x +1 \\ \end{align*}

1.714

11424

2961

\begin{align*} x^{\prime }+x&={\mathrm e}^{-y} \\ \end{align*}

1.715

11425

19424

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=6 \\ \end{align*}

1.715

11426

24798

\begin{align*} 4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

1.715

11427

17302

\begin{align*} 1+2 y-2 y^{\prime } t&=\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

1.716

11428

1229

\begin{align*} y^{\prime }+y&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

1.717

11429

4752

\begin{align*} y^{\prime } x +x^{2}-y&=0 \\ \end{align*}

1.717

11430

18933

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=1-\operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.717

11431

19850

\begin{align*} e y^{\prime \prime }&=-P \left (L -x \right ) \\ \end{align*}

1.717

11432

1212

\begin{align*} 1+\left (-\sin \left (y\right )+\frac {x}{y}\right ) y^{\prime }&=0 \\ \end{align*}

1.718

11433

7226

\begin{align*} y^{\prime }-y x&=x \\ y \left (0\right ) &= 1 \\ \end{align*}

1.718

11434

24863

\begin{align*} \left (1+y^{\prime }\right )^{2} \left (-y^{\prime } x +y\right )&=1 \\ \end{align*}

1.718

11435

1514

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{2}+y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.719

11436

2693

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.719

11437

1102

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\ \end{align*}

1.720

11438

11858

\begin{align*} f \left (x {y^{\prime }}^{2}\right )+2 y^{\prime } x -y&=0 \\ \end{align*}

1.720

11439

16721

\begin{align*} x^{2} y^{\prime \prime }-6 y&=0 \\ \end{align*}

1.720

11440

885

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

1.721

11441

8868

\begin{align*} y^{\prime }-2 y&=x^{2}+x \\ \end{align*}

1.721

11442

263

\begin{align*} y^{\prime \prime }-2 y^{\prime }-5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.722

11443

19891

\begin{align*} y^{\prime }-2 y-2 z&={\mathrm e}^{3 x} \\ z^{\prime }+5 y-2 z&={\mathrm e}^{4 x} \\ \end{align*}

1.722

11444

20423

\begin{align*} 4 y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

1.722

11445

668

\begin{align*} y^{\prime }&=x^{2}-y-2 \\ \end{align*}

1.724

11446

9532

\begin{align*} x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.724

11447

12946

\begin{align*} \left (x -y\right ) y^{\prime \prime }-h \left (y^{\prime }\right )&=0 \\ \end{align*}

1.724

11448

18361

\begin{align*} y^{\prime \prime }+\alpha y^{\prime }&=0 \\ y \left (0\right ) &= {\mathrm e}^{\alpha } \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

1.724

11449

22101

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

1.724

11450

845

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

1.725

11451

4296

\begin{align*} \ln \left (x \right ) y^{\prime }+\frac {x +y}{x}&=0 \\ \end{align*}

1.725

11452

15934

\begin{align*} y^{\prime }&=t^{r} y+4 \\ \end{align*}

1.725

11453

811

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.726

11454

10118

\begin{align*} y^{\prime \prime }-x^{3} y-x^{3}&=0 \\ \end{align*}

1.726

11455

17132

\begin{align*} y^{\prime }&=3 y \\ \end{align*}

1.726

11456

20865

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

1.726

11457

24974

\begin{align*} 2 t y+y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ \end{align*}

1.726

11458

25546

\begin{align*} y^{\prime \prime }+y&=\delta \left (t \right ) \\ \end{align*}

1.726

11459

1113

\begin{align*} \frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\ y \left (\pi \right ) &= 0 \\ \end{align*}

1.727

11460

7016

\begin{align*} y^{\prime } x +a y+b \,x^{n}&=0 \\ \end{align*}

1.727

11461

20875

\begin{align*} x^{\prime \prime }+x&=5 t^{2} \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.727

11462

21264

\begin{align*} x^{\prime \prime }-x+3 x^{2}&=0 \\ x \left (0\right ) &= {\frac {1}{4}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.727

11463

3439

\begin{align*} y^{\prime }&=2 y+{\mathrm e}^{-3 t} \\ \end{align*}

1.728

11464

7159

\begin{align*} \frac {x}{1+y}&=\frac {y y^{\prime }}{x +1} \\ \end{align*}

1.728

11465

15335

\begin{align*} -y^{\prime } x +y&=0 \\ \end{align*}

1.728

11466

15907

\begin{align*} y+y^{\prime }&=\cos \left (2 t \right ) \\ y \left (0\right ) &= 5 \\ \end{align*}

1.728

11467

19678

\begin{align*} x^{\prime }+x \tan \left (t \right )&=0 \\ \end{align*}

1.728

11468

3807

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

1.730

11469

3974

\begin{align*} y^{\prime }+4 y&=3 \delta \left (t -1\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

1.730

11470

14326

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

1.730

11471

15948

\begin{align*} y^{\prime }&=\frac {t y}{t^{2}+1} \\ \end{align*}

1.731

11472

23169

\begin{align*} y^{\prime }-y x&=\left (-x^{2}+1\right ) {\mathrm e}^{\frac {x^{2}}{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.731

11473

19730

\begin{align*} x {y^{\prime }}^{2}+2 y^{\prime }-y&=0 \\ \end{align*}

1.733

11474

25518

\begin{align*} y^{\prime \prime }&=-9 y \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.733

11475

2062

\begin{align*} 2 x^{2} \left (2+x \right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.734

11476

4193

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=\cot \left (x \right ) \\ \end{align*}

1.734

11477

6491

\begin{align*} 5 y y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

1.734

11478

9623

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.734

11479

12292

\begin{align*} y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\ \end{align*}

1.734

11480

9418

\begin{align*} \left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.735

11481

18948

\begin{align*} y^{\prime \prime \prime \prime }-y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.735

11482

7960

\begin{align*} x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y&=0 \\ \end{align*}

1.736

11483

11758

\begin{align*} y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x&=0 \\ \end{align*}

1.736

11484

20424

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

1.736

11485

3272

\begin{align*} 2 y^{\prime \prime }&={\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.737

11486

4792

\begin{align*} y^{\prime } x&=a \,x^{m}-b y-c \,x^{n} y^{2} \\ \end{align*}

1.737

11487

19676

\begin{align*} 2 t +3 x+\left (3 t -x\right ) x^{\prime }&=t^{2} \\ \end{align*}

1.737

11488

14367

\begin{align*} x^{\prime }+3 x&=\delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \\ x \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.738

11489

16399

\begin{align*} y^{\prime \prime \prime }&=2 \sqrt {y^{\prime \prime }} \\ \end{align*}

1.739

11490

22630

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

1.739

11491

4007

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }+\left (x -2\right ) {\mathrm e}^{x} y^{\prime }+\frac {4 y}{x}&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.740

11492

14311

\begin{align*} x^{\prime \prime }+x&=9 \,{\mathrm e}^{-t} \\ \end{align*}

1.740

11493

22069

\begin{align*} y^{\prime }+\frac {2 y}{x}&=x \\ y \left (1\right ) &= 0 \\ \end{align*}

1.740

11494

23201

\begin{align*} 2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.740

11495

3715

\begin{align*} y^{\prime \prime }+y&=6 \,{\mathrm e}^{x} \\ \end{align*}

1.741

11496

23924

\begin{align*} 3 y y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

1.741

11497

5210

\begin{align*} \left (x +y^{2}\right ) y^{\prime }+y&=b x +a \\ \end{align*}

1.742

11498

7799

\begin{align*} y^{\prime }-y&={\mathrm e}^{x} \\ \end{align*}

1.742

11499

14905

\begin{align*} x^{\prime }+\left (a +\frac {1}{t}\right ) x&=b \\ x \left (1\right ) &= x_{0} \\ \end{align*}

1.743

11500

15022

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \\ \end{align*}

1.743