| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 11401 |
\begin{align*}
y^{\prime }&=t y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.706 |
|
| 11402 |
\begin{align*}
x^{2}-2 y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.707 |
|
| 11403 |
\begin{align*}
\left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.708 |
|
| 11404 |
\begin{align*}
y^{\prime } x&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.709 |
|
| 11405 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.709 |
|
| 11406 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=4 x \,{\mathrm e}^{-3 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.710 |
|
| 11407 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.710 |
|
| 11408 |
\begin{align*}
-y+y^{\prime } x&=2 x^{2} y \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.711 |
|
| 11409 |
\begin{align*}
2 y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.711 |
|
| 11410 |
\begin{align*}
y^{\prime }&=\frac {1}{-3+y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.711 |
|
| 11411 |
\begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.711 |
|
| 11412 |
\begin{align*}
y^{\prime }&=t^{2}+y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.711 |
|
| 11413 |
\begin{align*}
2 y+y^{\prime } t&=\sin \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.712 |
|
| 11414 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.712 |
|
| 11415 |
\begin{align*}
t y+y^{\prime }&=1+t \\
y \left (\frac {3}{2}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.713 |
|
| 11416 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
1.713 |
|
| 11417 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.713 |
|
| 11418 |
\begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.713 |
|
| 11419 |
\begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.713 |
|
| 11420 |
\begin{align*}
y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.714 |
|
| 11421 |
\begin{align*}
y&=y^{\prime } x +\sqrt {1-{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.714 |
|
| 11422 |
\begin{align*}
y^{\prime }&=y \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.714 |
|
| 11423 |
\begin{align*}
y^{\prime }+3 y&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.714 |
|
| 11424 |
\begin{align*}
x^{\prime }+x&={\mathrm e}^{-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.715 |
|
| 11425 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.715 |
|
| 11426 |
\begin{align*}
4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.715 |
|
| 11427 |
\begin{align*}
1+2 y-2 y^{\prime } t&=\frac {1}{{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.716 |
|
| 11428 |
\begin{align*}
y^{\prime }+y&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| 11429 |
\begin{align*}
y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| 11430 |
\begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=1-\operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| 11431 |
\begin{align*}
e y^{\prime \prime }&=-P \left (L -x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| 11432 |
\begin{align*}
1+\left (-\sin \left (y\right )+\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.718 |
|
| 11433 |
\begin{align*}
y^{\prime }-y x&=x \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.718 |
|
| 11434 |
\begin{align*}
\left (1+y^{\prime }\right )^{2} \left (-y^{\prime } x +y\right )&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.718 |
|
| 11435 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{2}+y&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.719 |
|
| 11436 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.719 |
|
| 11437 |
\begin{align*}
-2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.720 |
|
| 11438 |
\begin{align*}
f \left (x {y^{\prime }}^{2}\right )+2 y^{\prime } x -y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.720 |
|
| 11439 |
\begin{align*}
x^{2} y^{\prime \prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.720 |
|
| 11440 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.721 |
|
| 11441 |
\begin{align*}
y^{\prime }-2 y&=x^{2}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.721 |
|
| 11442 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-5 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.722 |
|
| 11443 |
\begin{align*}
y^{\prime }-2 y-2 z&={\mathrm e}^{3 x} \\
z^{\prime }+5 y-2 z&={\mathrm e}^{4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.722 |
|
| 11444 |
\begin{align*}
4 y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.722 |
|
| 11445 |
\begin{align*}
y^{\prime }&=x^{2}-y-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.724 |
|
| 11446 |
\begin{align*}
x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.724 |
|
| 11447 |
\begin{align*}
\left (x -y\right ) y^{\prime \prime }-h \left (y^{\prime }\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.724 |
|
| 11448 |
\begin{align*}
y^{\prime \prime }+\alpha y^{\prime }&=0 \\
y \left (0\right ) &= {\mathrm e}^{\alpha } \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.724 |
|
| 11449 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.724 |
|
| 11450 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.725 |
|
| 11451 |
\begin{align*}
\ln \left (x \right ) y^{\prime }+\frac {x +y}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.725 |
|
| 11452 |
\begin{align*}
y^{\prime }&=t^{r} y+4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.725 |
|
| 11453 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.726 |
|
| 11454 |
\begin{align*}
y^{\prime \prime }-x^{3} y-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.726 |
|
| 11455 |
\begin{align*}
y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.726 |
|
| 11456 |
\begin{align*}
4 x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.726 |
|
| 11457 |
\begin{align*}
2 t y+y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.726 |
|
| 11458 |
\begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.726 |
|
| 11459 |
\begin{align*}
\frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.727 |
|
| 11460 |
\begin{align*}
y^{\prime } x +a y+b \,x^{n}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.727 |
|
| 11461 |
\begin{align*}
x^{\prime \prime }+x&=5 t^{2} \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.727 |
|
| 11462 |
\begin{align*}
x^{\prime \prime }-x+3 x^{2}&=0 \\
x \left (0\right ) &= {\frac {1}{4}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.727 |
|
| 11463 |
\begin{align*}
y^{\prime }&=2 y+{\mathrm e}^{-3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.728 |
|
| 11464 |
\begin{align*}
\frac {x}{1+y}&=\frac {y y^{\prime }}{x +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.728 |
|
| 11465 |
\begin{align*}
-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.728 |
|
| 11466 |
\begin{align*}
y+y^{\prime }&=\cos \left (2 t \right ) \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.728 |
|
| 11467 |
\begin{align*}
x^{\prime }+x \tan \left (t \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.728 |
|
| 11468 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.730 |
|
| 11469 |
\begin{align*}
y^{\prime }+4 y&=3 \delta \left (t -1\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.730 |
|
| 11470 |
\begin{align*}
t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.730 |
|
| 11471 |
\begin{align*}
y^{\prime }&=\frac {t y}{t^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.731 |
|
| 11472 |
\begin{align*}
y^{\prime }-y x&=\left (-x^{2}+1\right ) {\mathrm e}^{\frac {x^{2}}{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.731 |
|
| 11473 |
\begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.733 |
|
| 11474 |
\begin{align*}
y^{\prime \prime }&=-9 y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.733 |
|
| 11475 |
\begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.734 |
|
| 11476 |
\begin{align*}
y^{\prime }+\tan \left (x \right ) y&=\cot \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.734 |
|
| 11477 |
\begin{align*}
5 y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.734 |
|
| 11478 |
\begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.734 |
|
| 11479 |
\begin{align*}
y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.734 |
|
| 11480 |
\begin{align*}
\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.735 |
|
| 11481 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=\delta \left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.735 |
|
| 11482 |
\begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.736 |
|
| 11483 |
\begin{align*}
y {y^{\prime }}^{2}-\left (-x +y\right ) y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.736 |
|
| 11484 |
\begin{align*}
y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.736 |
|
| 11485 |
\begin{align*}
2 y^{\prime \prime }&={\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.737 |
|
| 11486 |
\begin{align*}
y^{\prime } x&=a \,x^{m}-b y-c \,x^{n} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.737 |
|
| 11487 |
\begin{align*}
2 t +3 x+\left (3 t -x\right ) x^{\prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.737 |
|
| 11488 |
\begin{align*}
x^{\prime }+3 x&=\delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \\
x \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.738 |
|
| 11489 |
\begin{align*}
y^{\prime \prime \prime }&=2 \sqrt {y^{\prime \prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.739 |
|
| 11490 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.739 |
|
| 11491 |
\begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }+\left (x -2\right ) {\mathrm e}^{x} y^{\prime }+\frac {4 y}{x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.740 |
|
| 11492 |
\begin{align*}
x^{\prime \prime }+x&=9 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.740 |
|
| 11493 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}&=x \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.740 |
|
| 11494 |
\begin{align*}
2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.740 |
|
| 11495 |
\begin{align*}
y^{\prime \prime }+y&=6 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.741 |
|
| 11496 |
\begin{align*}
3 y y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.741 |
|
| 11497 |
\begin{align*}
\left (x +y^{2}\right ) y^{\prime }+y&=b x +a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.742 |
|
| 11498 |
\begin{align*}
y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.742 |
|
| 11499 |
\begin{align*}
x^{\prime }+\left (a +\frac {1}{t}\right ) x&=b \\
x \left (1\right ) &= x_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.743 |
|
| 11500 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.743 |
|