2.3.131 Problems 13001 to 13100

Table 2.793: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

13001

9344

\begin{align*} y^{\prime }+y&=\cos \left (x \right ) \\ \end{align*}

2.296

13002

22549

\begin{align*} \left (\sin \left (y\right )-x \right ) y^{\prime }&=2 x +y \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

2.297

13003

75

\begin{align*} y^{\prime }+3 y&=2 x \,{\mathrm e}^{-3 x} \\ \end{align*}

2.298

13004

3013

\begin{align*} x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.298

13005

5293

\begin{align*} \left (a +x^{2}+y^{2}\right ) y y^{\prime }&=x \left (a -x^{2}-y^{2}\right ) \\ \end{align*}

2.298

13006

9785

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\ \end{align*}

2.298

13007

15015

\begin{align*} \tan \left (y\right )-\cot \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.299

13008

9635

\begin{align*} y^{\prime \prime }+16 y&=\left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

2.300

13009

20567

\begin{align*} 1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

2.300

13010

4093

\begin{align*} x^{2}+x -1+\left (2 y x +y\right ) y^{\prime }&=0 \\ \end{align*}

2.302

13011

14146

\begin{align*} 3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

2.302

13012

13348

\begin{align*} y^{\prime } x&=a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \\ \end{align*}

2.303

13013

15661

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

2.303

13014

24351

\begin{align*} x -y+2+3 y^{\prime }&=0 \\ \end{align*}

2.305

13015

81

\begin{align*} -y+y^{\prime } x&=x \\ y \left (1\right ) &= 7 \\ \end{align*}

2.306

13016

4430

\begin{align*} 2 x +y \cos \left (y x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

2.306

13017

21729

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 4 \\ y \left (\pi \right ) &= 4 \\ \end{align*}

2.306

13018

98

\begin{align*} \frac {1-4 x y^{2}}{x^{\prime }}&=y^{3} \\ \end{align*}

2.307

13019

120

\begin{align*} y^{\prime }&=\sqrt {x +y+1} \\ \end{align*}

2.307

13020

756

\begin{align*} x \,{\mathrm e}^{y} y^{\prime }&=2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \\ \end{align*}

2.307

13021

7745

\begin{align*} y^{\prime }&=\frac {x -2 y+1}{2 x -4 y} \\ y \left (1\right ) &= 1 \\ \end{align*}

2.307

13022

14162

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\ \end{align*}

2.307

13023

14327

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

2.307

13024

16345

\begin{align*} 2+2 x^{2}-2 y x +\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

2.307

13025

20038

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\ \end{align*}

2.307

13026

20569

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

2.307

13027

9195

\begin{align*} \sec \left (x \right ) y^{\prime }&=\sec \left (y\right ) \\ \end{align*}

2.308

13028

17016

\begin{align*} y^{\prime }-y&=\sin \left (x \right ) \\ \end{align*}

2.308

13029

10

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.309

13030

15583

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x^{2}+y} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.309

13031

68

\begin{align*} 2 \sqrt {x}\, y^{\prime }&=\cos \left (y\right )^{2} \\ y \left (4\right ) &= \frac {\pi }{4} \\ \end{align*}

2.310

13032

710

\begin{align*} 2 y^{\prime } x +y&=10 \sqrt {x} \\ \end{align*}

2.310

13033

2978

\begin{align*} 2 y-y x -3+y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

2.310

13034

7431

\begin{align*} y^{\prime } x +3 y+3 x^{2}&=\frac {\sin \left (x \right )}{x} \\ \end{align*}

2.310

13035

16225

\begin{align*} y^{\prime }&=2 x -1+2 y x -y \\ y \left (0\right ) &= 2 \\ \end{align*}

2.310

13036

4625

\begin{align*} y^{\prime }&=\cot \left (x \right ) y \\ \end{align*}

2.311

13037

7800

\begin{align*} y^{\prime }-y&=x \,{\mathrm e}^{2 x}+1 \\ \end{align*}

2.311

13038

23185

\begin{align*} \cos \left (y\right )+\sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

2.311

13039

783

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+x^{2} y^{4} \\ \end{align*}

2.312

13040

15139

\begin{align*} x^{2} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

2.313

13041

15292

\begin{align*} x^{\prime }&=2 x+y-z+5 \sin \left (t \right ) \\ y^{\prime }&=y+z-10 \cos \left (t \right ) \\ z^{\prime }&=x+z+2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

2.313

13042

23369

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

2.313

13043

12019

\begin{align*} y^{\prime }&=\frac {x \left (-1+x -2 y x +2 x^{3}\right )}{x^{2}-y} \\ \end{align*}

2.314

13044

15050

\begin{align*} x^{\prime }-x \cot \left (t \right )&=4 \sin \left (t \right ) \\ \end{align*}

2.314

13045

16381

\begin{align*} x^{2} y^{\prime }+3 y x&=6 \,{\mathrm e}^{-x^{2}} \\ \end{align*}

2.314

13046

7359

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}+4&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

2.315

13047

8391

\begin{align*} y^{\prime }&=y-y^{3} \\ y \left (0\right ) &= -2 \\ \end{align*}

2.316

13048

8904

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

2.316

13049

7223

\begin{align*} y y^{\prime }+x y^{2}-8 x&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

2.317

13050

9846

\begin{align*} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\ \end{align*}

2.317

13051

4642

\begin{align*} y^{\prime }&=\sin \left (2 x \right )+\tan \left (x \right ) y \\ \end{align*}

2.318

13052

7537

\begin{align*} x^{\prime }-\frac {x}{t -1}&=t^{2}+2 \\ \end{align*}

2.318

13053

13930

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

2.318

13054

19381

\begin{align*} y+x^{2}&=y^{\prime } x \\ \end{align*}

2.319

13055

24851

\begin{align*} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\ \end{align*}

2.319

13056

3706

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=0 \\ \end{align*}

2.320

13057

8374

\begin{align*} {\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

2.320

13058

10364

\begin{align*} a {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

2.320

13059

20535

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

2.321

13060

21364

\begin{align*} y^{\prime }&=\frac {x +y}{x} \\ \end{align*}

2.321

13061

12680

\begin{align*} y^{\prime \prime }&=-\frac {\left (\sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }}{\sin \left (x \right )}-y \sin \left (x \right )^{2} \\ \end{align*}

2.322

13062

5612

\begin{align*} {y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \\ \end{align*}

2.323

13063

14210

\begin{align*} x^{\prime }+t x^{\prime \prime }&=1 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

2.323

13064

15531

\begin{align*} y^{\prime }&=-y x \\ \end{align*}

2.323

13065

15606

\begin{align*} x \left (1-y^{3}\right )-3 y^{2} y^{\prime }&=0 \\ \end{align*}

2.323

13066

777

\begin{align*} 2 x^{2} y+x^{3} y^{\prime }&=1 \\ \end{align*}

2.324

13067

1264

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ y \left (-2\right ) &= 1 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

2.324

13068

18075

\begin{align*} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.324

13069

24997

\begin{align*} y^{\prime } t +2 y \ln \left (t \right )&=4 \ln \left (t \right ) \\ \end{align*}

2.324

13070

8117

\begin{align*} y^{\prime }+y x&=\frac {1}{x^{3}} \\ \end{align*}

2.325

13071

12687

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\ \end{align*}

2.325

13072

15799

\begin{align*} y^{\prime }&=-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.325

13073

20223

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-2 y x&=-x^{3}+x \\ \end{align*}

2.325

13074

9636

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.326

13075

12319

\begin{align*} -a y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

2.326

13076

19344

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=2 x \csc \left (x \right ) \\ \end{align*}

2.326

13077

22440

\begin{align*} y^{3}+2 \,{\mathrm e}^{x} y+\left ({\mathrm e}^{x}+3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.326

13078

18555

\begin{align*} y^{\prime }&=\frac {t^{2}+1}{3 y-y^{2}} \\ \end{align*}

2.327

13079

9008

\begin{align*} y^{\prime }&=\frac {x^{2}+x}{y-y^{2}} \\ \end{align*}

2.328

13080

11449

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x -2 x^{2}&=0 \\ \end{align*}

2.328

13081

15920

\begin{align*} y^{\prime }-\frac {2 y}{t}&=t^{3} {\mathrm e}^{t} \\ \end{align*}

2.328

13082

2492

\begin{align*} \cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\ \end{align*}

2.329

13083

17054

\begin{align*} t^{3} y^{\prime }+t^{4} y&=2 t^{3} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.329

13084

19968

\begin{align*} y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\ \end{align*}

2.329

13085

13038

\begin{align*} \left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

2.330

13086

6806

\begin{align*} {y^{\prime }}^{3} y^{\prime \prime \prime }&=1 \\ \end{align*}

2.331

13087

12419

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y&=0 \\ \end{align*}

2.331

13088

707

\begin{align*} y^{\prime }-2 y x&={\mathrm e}^{x^{2}} \\ \end{align*}

2.332

13089

4610

\begin{align*} y^{\prime }&=x^{2}+3 \cosh \left (x \right )-2 y \\ \end{align*}

2.332

13090

8425

\begin{align*} y^{\prime }+2 y x&=x^{3} \\ \end{align*}

2.332

13091

9053

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

2.332

13092

16365

\begin{align*} y^{\prime }&=4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \\ \end{align*}

2.332

13093

8545

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.333

13094

14516

\begin{align*} y^{\prime }&=-y^{2}+y x +1 \\ \end{align*}

2.333

13095

22075

\begin{align*} y^{\prime }+y x&=6 x \sqrt {y} \\ \end{align*}

2.333

13096

21414

\begin{align*} y^{\prime }+\frac {y}{y^{2} x^{2}+x}&=\frac {x y^{2}}{y^{2} x^{2}+x} \\ \end{align*}

2.334

13097

5962

\begin{align*} -\left (-a^{2} x^{2}+6\right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

2.336

13098

15607

\begin{align*} \left (2 x -1\right ) y+x \left (x +1\right ) y^{\prime }&=0 \\ \end{align*}

2.336

13099

22606

\begin{align*} y^{\prime }+y x&=x^{2}+1 \\ \end{align*}

2.336

13100

18266

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=\left (12 x -7\right ) {\mathrm e}^{-x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.337