| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 13001 |
\begin{align*}
y^{\prime }+y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.296 |
|
| 13002 |
\begin{align*}
\left (\sin \left (y\right )-x \right ) y^{\prime }&=2 x +y \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.297 |
|
| 13003 |
\begin{align*}
y^{\prime }+3 y&=2 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.298 |
|
| 13004 |
\begin{align*}
x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.298 |
|
| 13005 |
\begin{align*}
\left (a +x^{2}+y^{2}\right ) y y^{\prime }&=x \left (a -x^{2}-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.298 |
|
| 13006 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.298 |
|
| 13007 |
\begin{align*}
\tan \left (y\right )-\cot \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.299 |
|
| 13008 |
\begin{align*}
y^{\prime \prime }+16 y&=\left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.300 |
|
| 13009 |
\begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.300 |
|
| 13010 |
\begin{align*}
x^{2}+x -1+\left (2 y x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.302 |
|
| 13011 |
\begin{align*}
3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.302 |
|
| 13012 |
\begin{align*}
y^{\prime } x&=a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.303 |
|
| 13013 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.303 |
|
| 13014 |
\begin{align*}
x -y+2+3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.305 |
|
| 13015 |
\begin{align*}
-y+y^{\prime } x&=x \\
y \left (1\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.306 |
|
| 13016 |
\begin{align*}
2 x +y \cos \left (y x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.306 |
|
| 13017 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 4 \\
y \left (\pi \right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.306 |
|
| 13018 |
\begin{align*}
\frac {1-4 x y^{2}}{x^{\prime }}&=y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| 13019 |
\begin{align*}
y^{\prime }&=\sqrt {x +y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| 13020 |
\begin{align*}
x \,{\mathrm e}^{y} y^{\prime }&=2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.307 |
|
| 13021 |
\begin{align*}
y^{\prime }&=\frac {x -2 y+1}{2 x -4 y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| 13022 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.307 |
|
| 13023 |
\begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| 13024 |
\begin{align*}
2+2 x^{2}-2 y x +\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| 13025 |
\begin{align*}
2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| 13026 |
\begin{align*}
a y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| 13027 |
\begin{align*}
\sec \left (x \right ) y^{\prime }&=\sec \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.308 |
|
| 13028 |
\begin{align*}
y^{\prime }-y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.308 |
|
| 13029 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.309 |
|
| 13030 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x^{2}+y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.309 |
|
| 13031 |
\begin{align*}
2 \sqrt {x}\, y^{\prime }&=\cos \left (y\right )^{2} \\
y \left (4\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.310 |
|
| 13032 |
\begin{align*}
2 y^{\prime } x +y&=10 \sqrt {x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.310 |
|
| 13033 |
\begin{align*}
2 y-y x -3+y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.310 |
|
| 13034 |
\begin{align*}
y^{\prime } x +3 y+3 x^{2}&=\frac {\sin \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.310 |
|
| 13035 |
\begin{align*}
y^{\prime }&=2 x -1+2 y x -y \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.310 |
|
| 13036 |
\begin{align*}
y^{\prime }&=\cot \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.311 |
|
| 13037 |
\begin{align*}
y^{\prime }-y&=x \,{\mathrm e}^{2 x}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.311 |
|
| 13038 |
\begin{align*}
\cos \left (y\right )+\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.311 |
|
| 13039 |
\begin{align*}
y^{\prime }&=1+x^{2}+y^{2}+x^{2} y^{4} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.312 |
|
| 13040 |
\begin{align*}
x^{2} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.313 |
|
| 13041 |
\begin{align*}
x^{\prime }&=2 x+y-z+5 \sin \left (t \right ) \\
y^{\prime }&=y+z-10 \cos \left (t \right ) \\
z^{\prime }&=x+z+2 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
z \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.313 |
|
| 13042 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.313 |
|
| 13043 |
\begin{align*}
y^{\prime }&=\frac {x \left (-1+x -2 y x +2 x^{3}\right )}{x^{2}-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.314 |
|
| 13044 |
\begin{align*}
x^{\prime }-x \cot \left (t \right )&=4 \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.314 |
|
| 13045 |
\begin{align*}
x^{2} y^{\prime }+3 y x&=6 \,{\mathrm e}^{-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.314 |
|
| 13046 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}+4&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.315 |
|
| 13047 |
\begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
2.316 |
|
| 13048 |
\begin{align*}
4 y+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.316 |
|
| 13049 |
\begin{align*}
y y^{\prime }+x y^{2}-8 x&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.317 |
|
| 13050 |
\begin{align*}
y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.317 |
|
| 13051 |
\begin{align*}
y^{\prime }&=\sin \left (2 x \right )+\tan \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.318 |
|
| 13052 |
\begin{align*}
x^{\prime }-\frac {x}{t -1}&=t^{2}+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.318 |
|
| 13053 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.318 |
|
| 13054 |
\begin{align*}
y+x^{2}&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.319 |
|
| 13055 |
\begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.319 |
|
| 13056 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.320 |
|
| 13057 |
\begin{align*}
{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.320 |
|
| 13058 |
\begin{align*}
a {y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.320 |
|
| 13059 |
\begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.321 |
|
| 13060 |
\begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.321 |
|
| 13061 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (\sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }}{\sin \left (x \right )}-y \sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.322 |
|
| 13062 |
\begin{align*}
{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.323 |
|
| 13063 |
\begin{align*}
x^{\prime }+t x^{\prime \prime }&=1 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.323 |
|
| 13064 |
\begin{align*}
y^{\prime }&=-y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.323 |
|
| 13065 |
\begin{align*}
x \left (1-y^{3}\right )-3 y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.323 |
|
| 13066 |
\begin{align*}
2 x^{2} y+x^{3} y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.324 |
|
| 13067 |
\begin{align*}
4 y^{\prime \prime }-y&=0 \\
y \left (-2\right ) &= 1 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.324 |
|
| 13068 |
\begin{align*}
y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.324 |
|
| 13069 |
\begin{align*}
y^{\prime } t +2 y \ln \left (t \right )&=4 \ln \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.324 |
|
| 13070 |
\begin{align*}
y^{\prime }+y x&=\frac {1}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.325 |
|
| 13071 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.325 |
|
| 13072 |
\begin{align*}
y^{\prime }&=-y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.325 |
|
| 13073 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-2 y x&=-x^{3}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.325 |
|
| 13074 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.326 |
|
| 13075 |
\begin{align*}
-a y-y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.326 |
|
| 13076 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=2 x \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.326 |
|
| 13077 |
\begin{align*}
y^{3}+2 \,{\mathrm e}^{x} y+\left ({\mathrm e}^{x}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.326 |
|
| 13078 |
\begin{align*}
y^{\prime }&=\frac {t^{2}+1}{3 y-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.327 |
|
| 13079 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+x}{y-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.328 |
|
| 13080 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x -2 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.328 |
|
| 13081 |
\begin{align*}
y^{\prime }-\frac {2 y}{t}&=t^{3} {\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.328 |
|
| 13082 |
\begin{align*}
\cos \left (y\right ) \sin \left (t \right ) y^{\prime }&=\cos \left (t \right ) \sin \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.329 |
|
| 13083 |
\begin{align*}
t^{3} y^{\prime }+t^{4} y&=2 t^{3} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.329 |
|
| 13084 |
\begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.329 |
|
| 13085 |
\begin{align*}
\left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.330 |
|
| 13086 |
\begin{align*}
{y^{\prime }}^{3} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.331 |
|
| 13087 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.331 |
|
| 13088 |
\begin{align*}
y^{\prime }-2 y x&={\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.332 |
|
| 13089 |
\begin{align*}
y^{\prime }&=x^{2}+3 \cosh \left (x \right )-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.332 |
|
| 13090 |
\begin{align*}
y^{\prime }+2 y x&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.332 |
|
| 13091 |
\begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.332 |
|
| 13092 |
\begin{align*}
y^{\prime }&=4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.332 |
|
| 13093 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.333 |
|
| 13094 |
\begin{align*}
y^{\prime }&=-y^{2}+y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.333 |
|
| 13095 |
\begin{align*}
y^{\prime }+y x&=6 x \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.333 |
|
| 13096 |
\begin{align*}
y^{\prime }+\frac {y}{y^{2} x^{2}+x}&=\frac {x y^{2}}{y^{2} x^{2}+x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.334 |
|
| 13097 |
\begin{align*}
-\left (-a^{2} x^{2}+6\right ) y+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.336 |
|
| 13098 |
\begin{align*}
\left (2 x -1\right ) y+x \left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.336 |
|
| 13099 |
\begin{align*}
y^{\prime }+y x&=x^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.336 |
|
| 13100 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=\left (12 x -7\right ) {\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.337 |
|