2.3.143 Problems 14201 to 14300

Table 2.817: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

14201

18549

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\ y \left (1\right ) &= -3 \\ \end{align*}

2.788

14202

19409

\begin{align*} 3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

2.788

14203

21412

\begin{align*} y^{\prime } x -y+y^{2}&=0 \\ \end{align*}

2.788

14204

24310

\begin{align*} x^{2}-1+2 y+\left (-x^{2}+1\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

2.788

14205

113

\begin{align*} x^{2} y^{\prime }&=y x +y^{2} \\ \end{align*}

2.789

14206

8539

\begin{align*} y^{\prime \prime } x +y^{\prime }+\left (x -\frac {4}{x}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.790

14207

16334

\begin{align*} 4 y^{2}-y^{2} x^{2}+y^{\prime }&=0 \\ \end{align*}

2.790

14208

18497

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.790

14209

21140

\begin{align*} x^{\prime \prime }+4 x&=\cos \left (t \right ) \\ \end{align*}

2.791

14210

21440

\begin{align*} y^{\prime }+\frac {\left (2 x +1\right ) y}{x}&={\mathrm e}^{-2 x} \\ \end{align*}

2.791

14211

4842

\begin{align*} \left (a +x \right ) y^{\prime }&=b x +y \\ \end{align*}

2.792

14212

5717

\begin{align*} y^{\prime \prime }+y&=a x \\ \end{align*}

2.792

14213

7219

\begin{align*} \sin \left (x \right ) y^{\prime }&=y \ln \left (y\right ) \\ y \left (\frac {\pi }{3}\right ) &= {\mathrm e} \\ \end{align*}

2.792

14214

23911

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=\sin \left (x \right ) \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ \end{align*}

2.792

14215

11433

\begin{align*} x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}}&=0 \\ \end{align*}

2.793

14216

12213

\begin{align*} y^{\prime }&=-\frac {-x^{2}-y x -x^{3}-x y^{2}+2 y \ln \left (x \right ) x^{2}-x^{3} \ln \left (x \right )^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x^{2}} \\ \end{align*}

2.793

14217

21875

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

2.793

14218

15774

\begin{align*} y^{\prime }&=\frac {1+y}{1+t} \\ \end{align*}

2.795

14219

4658

\begin{align*} y^{\prime }&=2 x -\left (x^{2}+1\right ) y+y^{2} \\ \end{align*}

2.796

14220

8761

\begin{align*} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

2.796

14221

20737

\begin{align*} 4 x {y^{\prime }}^{2}&=\left (3 x -a \right )^{2} \\ \end{align*}

2.796

14222

21445

\begin{align*} y^{\prime }&=\frac {x^{4}+2 y}{x} \\ \end{align*}

2.796

14223

23280

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

2.796

14224

9647

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=1+\delta \left (-2+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

2.797

14225

21972

\begin{align*} y^{\prime }&=\sin \left (x \right ) y+{\mathrm e}^{x} \\ \end{align*}

2.797

14226

12835

\begin{align*} y^{\prime \prime }-y^{2}&=0 \\ \end{align*}

2.798

14227

19680

\begin{align*} t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x&=t^{3} \\ \end{align*}

2.798

14228

21022

\begin{align*} x^{\prime }-2 x&=2 t \\ x \left (0\right ) &= 3 \\ \end{align*}

2.798

14229

1252

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

2.799

14230

4728

\begin{align*} y^{\prime }&=\sec \left (x \right )^{2} \sec \left (y\right )^{3} \\ \end{align*}

2.799

14231

7793

\begin{align*} y^{\prime }-5 y&={\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \\ \end{align*}

2.799

14232

16348

\begin{align*} y^{\prime }&=\frac {1}{y x -3 x} \\ \end{align*}

2.799

14233

20816

\begin{align*} y^{\prime } x -2 y&=x^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}

2.799

14234

23167

\begin{align*} y^{\prime }-2 y x&=4 x \sqrt {y} \\ \end{align*}

2.799

14235

16966

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

2.800

14236

748

\begin{align*} y^{2} y^{\prime }+2 x y^{3}&=6 x \\ \end{align*}

2.801

14237

6351

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{3} \\ \end{align*}

2.801

14238

17189

\begin{align*} y+y^{\prime }&=2 \cos \left (t \right )+t \\ \end{align*}

2.801

14239

2317

\begin{align*} \left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

2.802

14240

7156

\begin{align*} y^{\prime }&=a x y^{2} \\ \end{align*}

2.802

14241

20795

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {\csc \left (x \right )^{2} y}{2}&=0 \\ \end{align*}

2.802

14242

22422

\begin{align*} y^{\prime }&=\frac {2 x -\sin \left (y\right )}{x \cos \left (y\right )} \\ y \left (2\right ) &= 0 \\ \end{align*}

2.802

14243

203

\begin{align*} 2 y+\left (x +1\right ) y^{\prime }&=3 x +3 \\ \end{align*}

2.803

14244

7316

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

2.803

14245

22531

\begin{align*} \sin \left (x \right ) y^{\prime }&=\cos \left (x \right ) y+\sin \left (x \right )^{2} \\ \end{align*}

2.803

14246

243

\begin{align*} 35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

2.804

14247

4103

\begin{align*} y^{\prime } x&=x +y \\ y \left (-1\right ) &= -1 \\ \end{align*}

2.804

14248

7531

\begin{align*} y^{\prime }+\frac {2 y}{x}&=2 y^{2} x^{2} \\ \end{align*}

2.804

14249

19874

\begin{align*} y^{\prime \prime } x +3 y^{\prime }&=3 x \\ \end{align*}

2.804

14250

690

\begin{align*} y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \\ \end{align*}

2.806

14251

1353

\begin{align*} t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

2.806

14252

4980

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }&=\left (-x^{2}+1\right ) y \\ \end{align*}

2.807

14253

3584

\begin{align*} y^{\prime \prime }&=x^{n} \\ \end{align*}

2.809

14254

4998

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime }&=\left (x -3 x^{3} y\right ) y \\ \end{align*}

2.809

14255

14418

\begin{align*} y^{\prime } x +y&=x^{3} y^{3} \\ \end{align*}

2.809

14256

9329

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\ y \left (1\right ) &= {\mathrm e} \\ y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\ \end{align*}

2.810

14257

14585

\begin{align*} 4 y^{\prime \prime }+y&=0 \\ \end{align*}

2.810

14258

25202

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

2.811

14259

19089

\begin{align*} y^{\prime } x -3 y+y^{2}&=4 x^{2}-4 x \\ \end{align*}

2.812

14260

8535

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.813

14261

7123

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=x^{2} \\ \end{align*}

2.814

14262

22610

\begin{align*} y^{\prime }&=x y^{2}-2 y+4-4 x \\ \end{align*}

2.814

14263

1278

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \\ \end{align*}

2.815

14264

12313

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y&=0 \\ \end{align*}

2.815

14265

8470

\begin{align*} y^{\prime } x -4 y&=x^{6} {\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.816

14266

14714

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=2 x \ln \left (x \right ) \\ \end{align*}

2.816

14267

22521

\begin{align*} \left (3-x^{2} y\right ) y^{\prime }&=x y^{2}+4 \\ \end{align*}

2.817

14268

6154

\begin{align*} \left (4 x k -4 p^{2}-x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

2.818

14269

8659

\begin{align*} y^{\prime }&=\sin \left (x \right ) y \\ \end{align*}

2.818

14270

14419

\begin{align*} y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\ \end{align*}

2.818

14271

2479

\begin{align*} \sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.819

14272

2667

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

2.819

14273

8273

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

2.819

14274

8645

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\ y \left (\pi \right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 2 \,{\mathrm e}^{-\pi }-2 \\ \end{align*}
Using Laplace transform method.

2.819

14275

15052

\begin{align*} y^{\prime }-\frac {3 y}{x}+x^{3} y^{2}&=0 \\ \end{align*}

2.819

14276

16614

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-4 \cos \left (x \right )+7 \sin \left (x \right ) \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

2.819

14277

21436

\begin{align*} y^{\prime }+\frac {4 y}{x}&=x^{4} \\ \end{align*}

2.819

14278

24041

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \\ \end{align*}

2.819

14279

24569

\begin{align*} 4 y^{\prime \prime }+y&=2 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 1 \\ \end{align*}

2.819

14280

2835

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (L \right ) &= 0 \\ \end{align*}

2.820

14281

18196

\begin{align*} 7 y^{\prime \prime }-y^{\prime }&=14 x \\ \end{align*}

2.820

14282

19941

\begin{align*} 3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x^{3}}{y^{2}} \\ \end{align*}

2.820

14283

9771

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

2.821

14284

3723

\begin{align*} y^{\prime \prime }+9 y&=5 \cos \left (2 x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

2.822

14285

4241

\begin{align*} x^{2} y^{\prime }-2 y x -2 y^{2}&=0 \\ \end{align*}

2.823

14286

5581

\begin{align*} \left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\ \end{align*}

2.823

14287

8233

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (5\right ) &= 3 \\ \end{align*}

2.823

14288

8676

\begin{align*} y^{\prime }&=\left (-1+y\right ) \left (x +1\right ) \\ \end{align*}

2.823

14289

23927

\begin{align*} y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

2.823

14290

13915

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{-2+n} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y&=0 \\ \end{align*}

2.824

14291

16711

\begin{align*} y^{\prime \prime }-36 y&=0 \\ \end{align*}

2.824

14292

3521

\begin{align*} y^{\prime }&=\frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \\ \end{align*}

2.825

14293

9006

\begin{align*} y^{\prime }&=x^{2} y \\ \end{align*}

2.825

14294

14512

\begin{align*} y^{\prime }+y&=2 \sin \left (x \right )+5 \sin \left (2 x \right ) \\ \end{align*}

2.825

14295

21266

\begin{align*} x^{\prime \prime }-x+3 x^{2}&=0 \\ x \left (0\right ) &= -{\frac {1}{4}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.825

14296

13270

\begin{align*} x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x&=0 \\ \end{align*}

2.826

14297

16240

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

2.826

14298

12967

\begin{align*} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3}&=0 \\ \end{align*}

2.827

14299

15365

\begin{align*} y^{\prime }-\frac {a y}{x}&=\frac {x +1}{x} \\ \end{align*}

2.827

14300

22993

\begin{align*} \sin \left (x \right ) y^{\prime }+2 \cos \left (x \right ) y&=4 \cos \left (x \right )^{3} \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ \end{align*}

2.827