| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14201 |
\begin{align*}
2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\
y \left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.788 |
|
| 14202 |
\begin{align*}
3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.788 |
|
| 14203 |
\begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.788 |
|
| 14204 |
\begin{align*}
x^{2}-1+2 y+\left (-x^{2}+1\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.788 |
|
| 14205 |
\begin{align*}
x^{2} y^{\prime }&=y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.789 |
|
| 14206 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+\left (x -\frac {4}{x}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.790 |
|
| 14207 |
\begin{align*}
4 y^{2}-y^{2} x^{2}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.790 |
|
| 14208 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.790 |
|
| 14209 |
\begin{align*}
x^{\prime \prime }+4 x&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.791 |
|
| 14210 |
\begin{align*}
y^{\prime }+\frac {\left (2 x +1\right ) y}{x}&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.791 |
|
| 14211 |
\begin{align*}
\left (a +x \right ) y^{\prime }&=b x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.792 |
|
| 14212 |
\begin{align*}
y^{\prime \prime }+y&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.792 |
|
| 14213 |
\begin{align*}
\sin \left (x \right ) y^{\prime }&=y \ln \left (y\right ) \\
y \left (\frac {\pi }{3}\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.792 |
|
| 14214 |
\begin{align*}
y^{\prime }-\tan \left (x \right ) y&=\sin \left (x \right ) \\
y \left (\frac {\pi }{4}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.792 |
|
| 14215 |
\begin{align*}
x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.793 |
|
| 14216 |
\begin{align*}
y^{\prime }&=-\frac {-x^{2}-y x -x^{3}-x y^{2}+2 y \ln \left (x \right ) x^{2}-x^{3} \ln \left (x \right )^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.793 |
|
| 14217 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.793 |
|
| 14218 |
\begin{align*}
y^{\prime }&=\frac {1+y}{1+t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.795 |
|
| 14219 |
\begin{align*}
y^{\prime }&=2 x -\left (x^{2}+1\right ) y+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.796 |
|
| 14220 |
\begin{align*}
y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.796 |
|
| 14221 |
\begin{align*}
4 x {y^{\prime }}^{2}&=\left (3 x -a \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.796 |
|
| 14222 |
\begin{align*}
y^{\prime }&=\frac {x^{4}+2 y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.796 |
|
| 14223 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.796 |
|
| 14224 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=1+\delta \left (-2+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.797 |
|
| 14225 |
\begin{align*}
y^{\prime }&=\sin \left (x \right ) y+{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.797 |
|
| 14226 |
\begin{align*}
y^{\prime \prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.798 |
|
| 14227 |
\begin{align*}
t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x&=t^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.798 |
|
| 14228 |
\begin{align*}
x^{\prime }-2 x&=2 t \\
x \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.798 |
|
| 14229 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.799 |
|
| 14230 |
\begin{align*}
y^{\prime }&=\sec \left (x \right )^{2} \sec \left (y\right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.799 |
|
| 14231 |
\begin{align*}
y^{\prime }-5 y&={\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.799 |
|
| 14232 |
\begin{align*}
y^{\prime }&=\frac {1}{y x -3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.799 |
|
| 14233 |
\begin{align*}
y^{\prime } x -2 y&=x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.799 |
|
| 14234 |
\begin{align*}
y^{\prime }-2 y x&=4 x \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.799 |
|
| 14235 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.800 |
|
| 14236 |
\begin{align*}
y^{2} y^{\prime }+2 x y^{3}&=6 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.801 |
|
| 14237 |
\begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.801 |
|
| 14238 |
\begin{align*}
y+y^{\prime }&=2 \cos \left (t \right )+t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.801 |
|
| 14239 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.802 |
|
| 14240 |
\begin{align*}
y^{\prime }&=a x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.802 |
|
| 14241 |
\begin{align*}
y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {\csc \left (x \right )^{2} y}{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.802 |
|
| 14242 |
\begin{align*}
y^{\prime }&=\frac {2 x -\sin \left (y\right )}{x \cos \left (y\right )} \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.802 |
|
| 14243 |
\begin{align*}
2 y+\left (x +1\right ) y^{\prime }&=3 x +3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| 14244 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| 14245 |
\begin{align*}
\sin \left (x \right ) y^{\prime }&=\cos \left (x \right ) y+\sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| 14246 |
\begin{align*}
35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.804 |
|
| 14247 |
\begin{align*}
y^{\prime } x&=x +y \\
y \left (-1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.804 |
|
| 14248 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}&=2 y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.804 |
|
| 14249 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }&=3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.804 |
|
| 14250 |
\begin{align*}
y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.806 |
|
| 14251 |
\begin{align*}
t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.806 |
|
| 14252 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime }&=\left (-x^{2}+1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.807 |
|
| 14253 |
\begin{align*}
y^{\prime \prime }&=x^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.809 |
|
| 14254 |
\begin{align*}
x^{2} \left (-x^{2}+1\right ) y^{\prime }&=\left (x -3 x^{3} y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.809 |
|
| 14255 |
\begin{align*}
y^{\prime } x +y&=x^{3} y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.809 |
|
| 14256 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\
y \left (1\right ) &= {\mathrm e} \\
y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.810 |
|
| 14257 |
\begin{align*}
4 y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.810 |
|
| 14258 |
\begin{align*}
\left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.811 |
|
| 14259 |
\begin{align*}
y^{\prime } x -3 y+y^{2}&=4 x^{2}-4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.812 |
|
| 14260 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.813 |
|
| 14261 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.814 |
|
| 14262 |
\begin{align*}
y^{\prime }&=x y^{2}-2 y+4-4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.814 |
|
| 14263 |
\begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.815 |
|
| 14264 |
\begin{align*}
y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.815 |
|
| 14265 |
\begin{align*}
y^{\prime } x -4 y&=x^{6} {\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.816 |
|
| 14266 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=2 x \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.816 |
|
| 14267 |
\begin{align*}
\left (3-x^{2} y\right ) y^{\prime }&=x y^{2}+4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.817 |
|
| 14268 |
\begin{align*}
\left (4 x k -4 p^{2}-x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.818 |
|
| 14269 |
\begin{align*}
y^{\prime }&=\sin \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.818 |
|
| 14270 |
\begin{align*}
y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.818 |
|
| 14271 |
\begin{align*}
\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14272 |
\begin{align*}
t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14273 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14274 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\
y \left (\pi \right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 2 \,{\mathrm e}^{-\pi }-2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
2.819 |
|
| 14275 |
\begin{align*}
y^{\prime }-\frac {3 y}{x}+x^{3} y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14276 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-4 \cos \left (x \right )+7 \sin \left (x \right ) \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14277 |
\begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14278 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14279 |
\begin{align*}
4 y^{\prime \prime }+y&=2 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| 14280 |
\begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.820 |
|
| 14281 |
\begin{align*}
7 y^{\prime \prime }-y^{\prime }&=14 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.820 |
|
| 14282 |
\begin{align*}
3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x^{3}}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.820 |
|
| 14283 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.821 |
|
| 14284 |
\begin{align*}
y^{\prime \prime }+9 y&=5 \cos \left (2 x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.822 |
|
| 14285 |
\begin{align*}
x^{2} y^{\prime }-2 y x -2 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.823 |
|
| 14286 |
\begin{align*}
\left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.823 |
|
| 14287 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (5\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.823 |
|
| 14288 |
\begin{align*}
y^{\prime }&=\left (-1+y\right ) \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.823 |
|
| 14289 |
\begin{align*}
y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.823 |
|
| 14290 |
\begin{align*}
\left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{-2+n} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.824 |
|
| 14291 |
\begin{align*}
y^{\prime \prime }-36 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.824 |
|
| 14292 |
\begin{align*}
y^{\prime }&=\frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.825 |
|
| 14293 |
\begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.825 |
|
| 14294 |
\begin{align*}
y^{\prime }+y&=2 \sin \left (x \right )+5 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.825 |
|
| 14295 |
\begin{align*}
x^{\prime \prime }-x+3 x^{2}&=0 \\
x \left (0\right ) &= -{\frac {1}{4}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
2.825 |
|
| 14296 |
\begin{align*}
x \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (b \,x^{2}+c \right ) y+s x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.826 |
|
| 14297 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.826 |
|
| 14298 |
\begin{align*}
4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.827 |
|
| 14299 |
\begin{align*}
y^{\prime }-\frac {a y}{x}&=\frac {x +1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.827 |
|
| 14300 |
\begin{align*}
\sin \left (x \right ) y^{\prime }+2 \cos \left (x \right ) y&=4 \cos \left (x \right )^{3} \\
y \left (\frac {\pi }{4}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.827 |
|