| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14901 |
\begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.121 |
|
| 14902 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-y-x^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.121 |
|
| 14903 |
\begin{align*}
y^{\prime }&=\sin \left (x -y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.122 |
|
| 14904 |
\begin{align*}
y y^{\prime }+x&=\frac {a^{2} \left (-y+y^{\prime } x \right )}{x^{2}+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.122 |
|
| 14905 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.123 |
|
| 14906 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{-\lambda \,x^{2}} y^{2}+\lambda x y+b^{2} a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.124 |
|
| 14907 |
\begin{align*}
3 x^{5} y^{2}+x^{3} y^{\prime }&=2 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.125 |
|
| 14908 |
\begin{align*}
y^{\prime }&=x \left (2+x^{2} y-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.125 |
|
| 14909 |
\begin{align*}
y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.125 |
|
| 14910 |
\begin{align*}
y^{\prime }+\frac {3 y}{x}&=6 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.125 |
|
| 14911 |
\begin{align*}
y^{\prime }+3 x^{2} y&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.127 |
|
| 14912 |
\begin{align*}
x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.128 |
|
| 14913 |
\begin{align*}
\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.129 |
|
| 14914 |
\begin{align*}
4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x&=0 \\
x \left (1\right ) &= 2 \\
x^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.130 |
|
| 14915 |
\begin{align*}
y^{\prime }&=t^{m} y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.130 |
|
| 14916 |
\begin{align*}
\tan \left (x \right ) y^{\prime }-y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.131 |
|
| 14917 |
\begin{align*}
y^{\prime }-4 y&=2 x y^{2} \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.131 |
|
| 14918 |
\begin{align*}
2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.131 |
|
| 14919 |
\begin{align*}
y^{\prime } x +a y^{2}-y+b \,x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.132 |
|
| 14920 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.132 |
|
| 14921 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.132 |
|
| 14922 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| 14923 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.134 |
|
| 14924 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.135 |
|
| 14925 |
\begin{align*}
2 x^{2}+5 x y^{2}+\left (5 x^{2} y-2 y^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.135 |
|
| 14926 |
\begin{align*}
-y+y^{\prime }&=t y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.135 |
|
| 14927 |
\begin{align*}
\left (-1+y\right )^{2} y^{\prime }&=2 x +3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.136 |
|
| 14928 |
\begin{align*}
\csc \left (y\right ) \cot \left (y\right ) y^{\prime }&=\csc \left (y\right )+{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.136 |
|
| 14929 |
\begin{align*}
3 t \left (1+t \right ) y^{\prime \prime }+y^{\prime } t -y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
3.136 |
|
| 14930 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }-y&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
3.137 |
|
| 14931 |
\begin{align*}
y y^{\prime } x +1+y^{2}&=0 \\
y \left (5\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.137 |
|
| 14932 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.137 |
|
| 14933 |
\begin{align*}
\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.137 |
|
| 14934 |
\begin{align*}
y^{\prime }-5 y&=3 x^{3}+4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.138 |
|
| 14935 |
\begin{align*}
y^{\prime \prime } x +2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
3.139 |
|
| 14936 |
\begin{align*}
y^{\prime \prime } x +v y^{\prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.140 |
|
| 14937 |
\begin{align*}
x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.140 |
|
| 14938 |
\begin{align*}
y^{\prime }&=\frac {3 y x^{2}}{x^{3}+2 y^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.140 |
|
| 14939 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.142 |
|
| 14940 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.143 |
|
| 14941 |
\begin{align*}
6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.144 |
|
| 14942 |
\begin{align*}
4 y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.144 |
|
| 14943 |
\begin{align*}
v+\left (2 x +1-v x \right ) v^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.144 |
|
| 14944 |
\begin{align*}
1+4 y x -4 x^{2} y+\left (-x^{3}+x^{2}\right ) y^{\prime }&=0 \\
y \left (2\right ) &= {\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.144 |
|
| 14945 |
\begin{align*}
3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.145 |
|
| 14946 |
\begin{align*}
y^{\prime }&=\left (y+\frac {1}{2}\right ) \left (y+t \right ) \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.145 |
|
| 14947 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.145 |
|
| 14948 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.145 |
|
| 14949 |
\begin{align*}
2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
3.146 |
|
| 14950 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.146 |
|
| 14951 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.146 |
|
| 14952 |
\begin{align*}
x -y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.146 |
|
| 14953 |
\begin{align*}
2 \cos \left (x \right ) y+3 \sin \left (x \right ) y^{\prime }&=0 \\
y \left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.146 |
|
| 14954 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 27 \\
y^{\prime }\left (0\right ) &= -54 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.147 |
|
| 14955 |
\begin{align*}
y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.148 |
|
| 14956 |
\begin{align*}
x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.148 |
|
| 14957 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.148 |
|
| 14958 |
\begin{align*}
y \,{\mathrm e}^{-2 x}+y^{3}-{\mathrm e}^{-2 x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.149 |
|
| 14959 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.149 |
|
| 14960 |
\begin{align*}
\sin \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\
y \left (\frac {\pi }{4}\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.150 |
|
| 14961 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 7 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.152 |
|
| 14962 |
\begin{align*}
r y^{\prime }&=\frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.152 |
|
| 14963 |
\begin{align*}
x \left (1+y^{2}\right )+\left (1+2 y\right ) {\mathrm e}^{-x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.152 |
|
| 14964 |
\begin{align*}
\left (c \,x^{2}+2 b x +a \right )^{{3}/{2}} y^{\prime \prime }&=f \left (\frac {x}{\sqrt {c \,x^{2}+2 b x +a}}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.152 |
|
| 14965 |
\begin{align*}
\cos \left (x \right ) y^{\prime }&=y-\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.152 |
|
| 14966 |
\begin{align*}
y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.153 |
|
| 14967 |
\begin{align*}
x^{\prime }&=-t x \\
x \left (0\right ) &= \frac {1}{\sqrt {\pi }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.153 |
|
| 14968 |
\begin{align*}
y^{\prime }&=\frac {1+x^{2}+y^{2}}{2 x y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.153 |
|
| 14969 |
\begin{align*}
\csc \left (x \right ) y^{\prime }&=\csc \left (y\right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.154 |
|
| 14970 |
\begin{align*}
2 x y^{2}+x^{2} y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.155 |
|
| 14971 |
\begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.155 |
|
| 14972 |
\begin{align*}
y^{\prime } x +\left (1+3 x \right ) y&={\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.155 |
|
| 14973 |
\begin{align*}
y^{\prime }&=\frac {y \left (y-{\mathrm e}^{x}\right )}{{\mathrm e}^{x}-2 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.155 |
|
| 14974 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.155 |
|
| 14975 |
\begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.156 |
|
| 14976 |
\begin{align*}
x \left (-3 y^{2}+x \right ) y^{\prime }+\left (2 x -y^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.157 |
|
| 14977 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.157 |
|
| 14978 |
\begin{align*}
y^{2} \left (y y^{\prime }-x \right )+x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.158 |
|
| 14979 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=\delta \left (t -\frac {\pi }{4}\right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.158 |
|
| 14980 |
\begin{align*}
y^{\prime \prime } x&=-y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.158 |
|
| 14981 |
\begin{align*}
y^{\prime }+\cot \left (t \right ) y&=\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.158 |
|
| 14982 |
\begin{align*}
\left (x^{2}-1\right ) y+\left (1+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.158 |
|
| 14983 |
\begin{align*}
y+\left (t -4\right ) t y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.159 |
|
| 14984 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=2 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.159 |
|
| 14985 |
\begin{align*}
\tan \left (x \right ) y^{\prime }&=y \\
y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.160 |
|
| 14986 |
\begin{align*}
y^{\prime }&=2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.160 |
|
| 14987 |
\begin{align*}
y^{\prime }+2 \tan \left (y\right ) \tan \left (x \right )-1&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.160 |
|
| 14988 |
\begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.161 |
|
| 14989 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.161 |
|
| 14990 |
\begin{align*}
y+\left (-{\mathrm e}^{-2 y}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.161 |
|
| 14991 |
\begin{align*}
y^{\prime }-y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.161 |
|
| 14992 |
\begin{align*}
y^{\prime \prime }+2 a x y^{\prime }+y a^{2} x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.163 |
|
| 14993 |
\begin{align*}
y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.163 |
|
| 14994 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.164 |
|
| 14995 |
\begin{align*}
9 y^{2} x^{2}+x^{{3}/{2}} y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.165 |
|
| 14996 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+5 y&=\operatorname {Heaviside}\left (-2+t \right ) \sin \left (-8+4 t \right ) \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
3.165 |
|
| 14997 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }-y&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
3.167 |
|
| 14998 |
\begin{align*}
q^{\prime }&=\frac {p \,{\mathrm e}^{p^{2}-q^{2}}}{q} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.167 |
|
| 14999 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.168 |
|
| 15000 |
\begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.168 |
|