2.3.163 Problems 16201 to 16300

Table 2.857: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

16201

6663

\begin{align*} -y^{\prime }+\left (2 \cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime \prime }+y^{\prime \prime \prime }&=\cot \left (x \right ) \\ \end{align*}

3.856

16202

4914

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

3.857

16203

5835

\begin{align*} y x -x^{2} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.857

16204

13302

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \\ \end{align*}

3.857

16205

16335

\begin{align*} y^{\prime }&=\sqrt {x +y} \\ \end{align*}

3.857

16206

20604

\begin{align*} 3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

3.857

16207

824

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\ \end{align*}

3.859

16208

13649

\begin{align*} y^{\prime } x&=a \,x^{4} y^{3}+\left (b \,x^{2}-1\right ) y+c x \\ \end{align*}

3.860

16209

18503

\begin{align*} y^{\prime }&=2 y^{2}+x y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

3.861

16210

16415

\begin{align*} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }-2\right ) \\ \end{align*}

3.862

16211

10377

\begin{align*} y^{\prime \prime }+y^{\prime }&=x \\ \end{align*}

3.863

16212

14308

\begin{align*} x^{\prime \prime }-x^{\prime }&=6+{\mathrm e}^{2 t} \\ \end{align*}

3.865

16213

9362

\begin{align*} x^{2} y^{\prime }&=y \\ \end{align*}

3.867

16214

13490

\begin{align*} y^{\prime }&=y^{2}+a^{2} f \left (a x +b \right ) \\ \end{align*}

3.867

16215

5998

\begin{align*} -\left (n \left (n +1\right )-a^{2} x^{2}\right ) y+2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

3.868

16216

7228

\begin{align*} \left (y x +x \right ) y^{\prime }+y&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

3.868

16217

8779

\begin{align*} y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

3.868

16218

5732

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

3.869

16219

12398

\begin{align*} 2 y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

3.869

16220

25780

\begin{align*} y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

3.869

16221

6337

\begin{align*} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

3.870

16222

11322

\begin{align*} y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x&=0 \\ \end{align*}

3.871

16223

5757

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

3.873

16224

7199

\begin{align*} y^{\prime }+y^{2}&=\frac {a^{2}}{x^{4}} \\ \end{align*}

3.873

16225

9628

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=\operatorname {Heaviside}\left (t -1\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

3.873

16226

11698

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime }-y&=0 \\ \end{align*}

3.873

16227

7733

\begin{align*} y y^{\prime } x -\left (x +1\right ) \sqrt {-1+y}&=0 \\ \end{align*}

3.874

16228

4844

\begin{align*} \left (a +x \right ) y^{\prime }&=2 \left (a +x \right )^{5}+3 y \\ \end{align*}

3.875

16229

19690

\begin{align*} x^{\prime \prime }-4 x^{\prime }+5 x&=0 \\ \end{align*}

3.875

16230

23270

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ \end{align*}

3.875

16231

1249

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ \end{align*}

3.877

16232

3625

\begin{align*} \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y&=\sin \left (2 x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

3.878

16233

12340

\begin{align*} y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y&=0 \\ \end{align*}

3.878

16234

8383

\begin{align*} 2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

3.879

16235

25013

\begin{align*} t y+y^{\prime }&=t y^{3} \\ \end{align*}

3.879

16236

14493

\begin{align*} \cos \left (x \right )^{2}-\cos \left (x \right ) y-\left (1+\sin \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

3.880

16237

19348

\begin{align*} x \ln \left (x \right ) y^{\prime }+y&=3 x^{3} \\ \end{align*}

3.881

16238

5724

\begin{align*} y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\ \end{align*}

3.884

16239

18506

\begin{align*} y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

3.884

16240

7754

\begin{align*} y^{\prime }+\frac {y}{x}&=x y^{2} \\ \end{align*}

3.885

16241

14281

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

3.885

16242

4189

\begin{align*} y y^{\prime }&=x \\ \end{align*}

3.886

16243

21617

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

3.887

16244

7382

\begin{align*} s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\ \end{align*}

3.889

16245

7861

\begin{align*} y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (-y^{\prime } x +y\right )&=0 \\ \end{align*}

3.889

16246

23953

\begin{align*} \left (x +\frac {x}{x^{2}+y^{2}}\right ) y^{\prime }+y-\frac {y}{x^{2}+y^{2}}&=0 \\ y \left (1\right ) &= \sqrt {3} \\ \end{align*}

3.889

16247

17126

\begin{align*} y^{\prime }+y f \left (t \right )&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

3.890

16248

18556

\begin{align*} y^{\prime }&=\frac {\cot \left (t \right ) y}{1+y} \\ \end{align*}

3.890

16249

3385

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.892

16250

8039

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

3.892

16251

20617

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=0 \\ \end{align*}

3.892

16252

3984

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

3.895

16253

9011

\begin{align*} y^{\prime }&=y^{2} \\ y \left (x_{0} \right ) &= y_{0} \\ \end{align*}

3.895

16254

14499

\begin{align*} y^{\prime } x -2 y&=2 x^{4} \\ y \left (2\right ) &= 8 \\ \end{align*}

3.895

16255

24869

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= -4 \\ \end{align*}

3.895

16256

25102

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ \end{align*}

3.895

16257

25707

\begin{align*} y^{\prime }&=y^{{2}/{3}} \\ \end{align*}

3.896

16258

3220

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +y&=0 \\ \end{align*}

3.898

16259

5257

\begin{align*} \left (x \left (a -x^{2}-y^{2}\right )+y\right ) y^{\prime }+x -\left (a -x^{2}-y^{2}\right ) y&=0 \\ \end{align*}

3.898

16260

5303

\begin{align*} x y^{3} y^{\prime }&=\left (-x^{2}+1\right ) \left (1+y^{2}\right ) \\ \end{align*}

3.898

16261

6827

\begin{align*} 1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=0 \\ \end{align*}

3.898

16262

7709

\begin{align*} x^{3}+\left (1+y\right )^{2} y^{\prime }&=0 \\ \end{align*}

3.898

16263

13389

\begin{align*} y^{\prime }&=y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \\ \end{align*}

3.898

16264

24242

\begin{align*} 2 y x +x^{2}+x^{4}-\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

3.899

16265

15496

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ \end{align*}

3.901

16266

14004

\begin{align*} x -y^{2}+2 y y^{\prime } x&=0 \\ \end{align*}

3.903

16267

20826

\begin{align*} y^{\prime }&=\frac {x}{y}-\frac {x}{1+y} \\ y \left (0\right ) &= 1 \\ \end{align*}

3.904

16268

18287

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \\ y \left (-\infty \right ) &= 0 \\ \end{align*}

3.905

16269

8418

\begin{align*} y^{\prime }&=\frac {x \left (1-x \right )}{y \left (y-2\right )} \\ y \left (0\right ) &= {\frac {3}{2}} \\ \end{align*}

3.907

16270

16220

\begin{align*} y y^{\prime } x&=y^{2}+9 \\ \end{align*}

3.907

16271

16924

\begin{align*} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

3.908

16272

22586

\begin{align*} y^{\prime } \sqrt {x^{3}+1}&=x^{2} y+x^{2} \\ \end{align*}

3.908

16273

15407

\begin{align*} y^{\prime \prime }&=\frac {1}{2 y^{\prime }} \\ \end{align*}

3.910

16274

828

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \\ \end{align*}

3.912

16275

2842

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

3.913

16276

14035

\begin{align*} \left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right )&=\left (x^{2}+y^{2}+x \right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

3.914

16277

21125

\begin{align*} x^{\prime \prime }-x&=0 \\ x \left (0\right ) &= 0 \\ x \left (1\right ) &= 0 \\ \end{align*}

3.915

16278

25489

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

3.915

16279

2390

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

3.917

16280

4918

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-y \left (2 x -y\right ) \\ \end{align*}

3.917

16281

13716

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y&=0 \\ \end{align*}

3.917

16282

23028

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

3.918

16283

13936

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

3.920

16284

17352

\begin{align*} 2 t^{2} y^{\prime \prime }-3 y^{\prime } t -3 y&=0 \\ \end{align*}

3.920

16285

19432

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=0 \\ \end{align*}

3.920

16286

25100

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\ \end{align*}

3.920

16287

12496

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-v \left (v +1\right ) y&=0 \\ \end{align*}

3.922

16288

4762

\begin{align*} y^{\prime } x&=1+x +a y \\ \end{align*}

3.924

16289

19899

\begin{align*} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\ \end{align*}

3.924

16290

23986

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

3.924

16291

25535

\begin{align*} 2 y^{\prime \prime }+8 y^{\prime }+6 y&=0 \\ \end{align*}

3.924

16292

9012

\begin{align*} y^{\prime }&=2 \sqrt {y} \\ y \left (x_{0} \right ) &= y_{0} \\ \end{align*}

3.925

16293

5421

\begin{align*} {y^{\prime }}^{2}+a y y^{\prime }-a x&=0 \\ \end{align*}

3.926

16294

14285

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

3.926

16295

17055

\begin{align*} 2 y^{\prime }+t y&=\ln \left (t \right ) \\ y \left ({\mathrm e}\right ) &= 0 \\ \end{align*}

3.926

16296

1579

\begin{align*} \sin \left (x \right ) \sin \left (y\right )+y^{\prime } \cos \left (y\right )&=0 \\ \end{align*}

3.928

16297

3664

\begin{align*} y^{\prime }+4 y x&=4 x^{3} \sqrt {y} \\ \end{align*}

3.928

16298

5801

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.928

16299

4310

\begin{align*} x y^{3}+{\mathrm e}^{x^{2}} y^{\prime }&=0 \\ \end{align*}

3.930

16300

19933

\begin{align*} y^{\prime }+\frac {x y}{-x^{2}+1}&=x \sqrt {y} \\ \end{align*}

3.930