| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 16201 |
\begin{align*}
-y^{\prime }+\left (2 \cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime \prime }+y^{\prime \prime \prime }&=\cot \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.856 |
|
| 16202 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.857 |
|
| 16203 |
\begin{align*}
y x -x^{2} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.857 |
|
| 16204 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.857 |
|
| 16205 |
\begin{align*}
y^{\prime }&=\sqrt {x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.857 |
|
| 16206 |
\begin{align*}
3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.857 |
|
| 16207 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.859 |
|
| 16208 |
\begin{align*}
y^{\prime } x&=a \,x^{4} y^{3}+\left (b \,x^{2}-1\right ) y+c x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.860 |
|
| 16209 |
\begin{align*}
y^{\prime }&=2 y^{2}+x y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.861 |
|
| 16210 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } \left (y^{\prime }-2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.862 |
|
| 16211 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.863 |
|
| 16212 |
\begin{align*}
x^{\prime \prime }-x^{\prime }&=6+{\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.865 |
|
| 16213 |
\begin{align*}
x^{2} y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.867 |
|
| 16214 |
\begin{align*}
y^{\prime }&=y^{2}+a^{2} f \left (a x +b \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.867 |
|
| 16215 |
\begin{align*}
-\left (n \left (n +1\right )-a^{2} x^{2}\right ) y+2 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.868 |
|
| 16216 |
\begin{align*}
\left (y x +x \right ) y^{\prime }+y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.868 |
|
| 16217 |
\begin{align*}
y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.868 |
|
| 16218 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.869 |
|
| 16219 |
\begin{align*}
2 y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.869 |
|
| 16220 |
\begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.869 |
|
| 16221 |
\begin{align*}
b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.870 |
|
| 16222 |
\begin{align*}
y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.871 |
|
| 16223 |
\begin{align*}
\left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.873 |
|
| 16224 |
\begin{align*}
y^{\prime }+y^{2}&=\frac {a^{2}}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.873 |
|
| 16225 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=\operatorname {Heaviside}\left (t -1\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.873 |
|
| 16226 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.873 |
|
| 16227 |
\begin{align*}
y y^{\prime } x -\left (x +1\right ) \sqrt {-1+y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.874 |
|
| 16228 |
\begin{align*}
\left (a +x \right ) y^{\prime }&=2 \left (a +x \right )^{5}+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.875 |
|
| 16229 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+5 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.875 |
|
| 16230 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.875 |
|
| 16231 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.877 |
|
| 16232 |
\begin{align*}
\sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y&=\sin \left (2 x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.878 |
|
| 16233 |
\begin{align*}
y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.878 |
|
| 16234 |
\begin{align*}
2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.879 |
|
| 16235 |
\begin{align*}
t y+y^{\prime }&=t y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.879 |
|
| 16236 |
\begin{align*}
\cos \left (x \right )^{2}-\cos \left (x \right ) y-\left (1+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.880 |
|
| 16237 |
\begin{align*}
x \ln \left (x \right ) y^{\prime }+y&=3 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.881 |
|
| 16238 |
\begin{align*}
y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.884 |
|
| 16239 |
\begin{align*}
y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
3.884 |
|
| 16240 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.885 |
|
| 16241 |
\begin{align*}
\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.885 |
|
| 16242 |
\begin{align*}
y y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.886 |
|
| 16243 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.887 |
|
| 16244 |
\begin{align*}
s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
3.889 |
|
| 16245 |
\begin{align*}
y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (-y^{\prime } x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.889 |
|
| 16246 |
\begin{align*}
\left (x +\frac {x}{x^{2}+y^{2}}\right ) y^{\prime }+y-\frac {y}{x^{2}+y^{2}}&=0 \\
y \left (1\right ) &= \sqrt {3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.889 |
|
| 16247 |
\begin{align*}
y^{\prime }+y f \left (t \right )&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.890 |
|
| 16248 |
\begin{align*}
y^{\prime }&=\frac {\cot \left (t \right ) y}{1+y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.890 |
|
| 16249 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
3.892 |
|
| 16250 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.892 |
|
| 16251 |
\begin{align*}
y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.892 |
|
| 16252 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| 16253 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| 16254 |
\begin{align*}
y^{\prime } x -2 y&=2 x^{4} \\
y \left (2\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| 16255 |
\begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| 16256 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| 16257 |
\begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.896 |
|
| 16258 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.898 |
|
| 16259 |
\begin{align*}
\left (x \left (a -x^{2}-y^{2}\right )+y\right ) y^{\prime }+x -\left (a -x^{2}-y^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.898 |
|
| 16260 |
\begin{align*}
x y^{3} y^{\prime }&=\left (-x^{2}+1\right ) \left (1+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.898 |
|
| 16261 |
\begin{align*}
1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.898 |
|
| 16262 |
\begin{align*}
x^{3}+\left (1+y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.898 |
|
| 16263 |
\begin{align*}
y^{\prime }&=y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.898 |
|
| 16264 |
\begin{align*}
2 y x +x^{2}+x^{4}-\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.899 |
|
| 16265 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.901 |
|
| 16266 |
\begin{align*}
x -y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.903 |
|
| 16267 |
\begin{align*}
y^{\prime }&=\frac {x}{y}-\frac {x}{1+y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.904 |
|
| 16268 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \\
y \left (-\infty \right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✗ |
✓ |
3.905 |
|
| 16269 |
\begin{align*}
y^{\prime }&=\frac {x \left (1-x \right )}{y \left (y-2\right )} \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.907 |
|
| 16270 |
\begin{align*}
y y^{\prime } x&=y^{2}+9 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.907 |
|
| 16271 |
\begin{align*}
\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
3.908 |
|
| 16272 |
\begin{align*}
y^{\prime } \sqrt {x^{3}+1}&=x^{2} y+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.908 |
|
| 16273 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{2 y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.910 |
|
| 16274 |
\begin{align*}
4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.912 |
|
| 16275 |
\begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.913 |
|
| 16276 |
\begin{align*}
\left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right )&=\left (x^{2}+y^{2}+x \right ) \left (-y+y^{\prime } x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.914 |
|
| 16277 |
\begin{align*}
x^{\prime \prime }-x&=0 \\
x \left (0\right ) &= 0 \\
x \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.915 |
|
| 16278 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.915 |
|
| 16279 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.917 |
|
| 16280 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=1-y \left (2 x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.917 |
|
| 16281 |
\begin{align*}
y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.917 |
|
| 16282 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.918 |
|
| 16283 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
3.920 |
|
| 16284 |
\begin{align*}
2 t^{2} y^{\prime \prime }-3 y^{\prime } t -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.920 |
|
| 16285 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.920 |
|
| 16286 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.920 |
|
| 16287 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-v \left (v +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
3.922 |
|
| 16288 |
\begin{align*}
y^{\prime } x&=1+x +a y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 16289 |
\begin{align*}
3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 16290 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 \,{\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 16291 |
\begin{align*}
2 y^{\prime \prime }+8 y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| 16292 |
\begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.925 |
|
| 16293 |
\begin{align*}
{y^{\prime }}^{2}+a y y^{\prime }-a x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.926 |
|
| 16294 |
\begin{align*}
\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.926 |
|
| 16295 |
\begin{align*}
2 y^{\prime }+t y&=\ln \left (t \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.926 |
|
| 16296 |
\begin{align*}
\sin \left (x \right ) \sin \left (y\right )+y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.928 |
|
| 16297 |
\begin{align*}
y^{\prime }+4 y x&=4 x^{3} \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.928 |
|
| 16298 |
\begin{align*}
16 y+8 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.928 |
|
| 16299 |
\begin{align*}
x y^{3}+{\mathrm e}^{x^{2}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.930 |
|
| 16300 |
\begin{align*}
y^{\prime }+\frac {x y}{-x^{2}+1}&=x \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.930 |
|