2.2.94 Problems 9301 to 9400

Table 2.189: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

9301

\[ {}y^{\prime }-\sqrt {\frac {1+y^{3}}{x^{3}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.768

9302

\[ {}y^{\prime }-\frac {\sqrt {{| y \left (-1+y\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}} = 0 \]

[_separable]

44.011

9303

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

3.295

9304

\[ {}y^{\prime }-\sqrt {\frac {a y^{4}+b y^{2}+1}{a \,x^{4}+b \,x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.970

9305

\[ {}y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.220

9306

\[ {}y^{\prime }-\sqrt {\frac {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7.742

9307

\[ {}y^{\prime }-\sqrt {\frac {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}{a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.811

9308

\[ {}y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right ) = 0 \]

[_separable]

1.926

9309

\[ {}y^{\prime }-\left (\frac {a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}}\right )^{{2}/{3}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.204

9310

\[ {}y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

[‘y=_G(x,y’)‘]

2.059

9311

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

1.367

9312

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

0.569

9313

\[ {}y^{\prime }-\cos \left (b x +a y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

54.520

9314

\[ {}y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.042

9315

\[ {}y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

2.602

9316

\[ {}y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1 = 0 \]

[‘y=_G(x,y’)‘]

1.204

9317

\[ {}y^{\prime }+2 \tan \left (y\right ) \tan \left (x \right )-1 = 0 \]

[‘y=_G(x,y’)‘]

1.487

9318

\[ {}y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

2.731

9319

\[ {}y^{\prime }-\tan \left (y x \right ) = 0 \]

[‘y=_G(x,y’)‘]

0.628

9320

\[ {}y^{\prime }-f \left (a x +b y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.080

9321

\[ {}y^{\prime }-x^{a -1} y^{1-b} f \left (\frac {x^{a}}{a}+\frac {y^{b}}{b}\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.824

9322

\[ {}y^{\prime }-\frac {y-x f \left (x^{2}+a y^{2}\right )}{x +a y f \left (x^{2}+a y^{2}\right )} = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.613

9323

\[ {}y^{\prime }-\frac {y a f \left (x^{c} y\right )+c \,x^{a} y^{b}}{x b f \left (x^{c} y\right )-x^{a} y^{b}} = 0 \]

[NONE]

3.526

9324

\[ {}2 y^{\prime }-3 y^{2}-4 a y-b -c \,{\mathrm e}^{-2 a x} = 0 \]

[_Riccati]

13.050

9325

\[ {}y^{\prime } x -\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

0.493

9326

\[ {}y^{\prime } x +y-x \sin \left (x \right ) = 0 \]

[_linear]

1.116

9327

\[ {}y^{\prime } x -y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

1.068

9328

\[ {}y^{\prime } x -y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

1.139

9329

\[ {}y^{\prime } x -y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

2.824

9330

\[ {}y^{\prime } x +a y+b \,x^{n} = 0 \]

[_linear]

1.165

9331

\[ {}y^{\prime } x +y^{2}+x^{2} = 0 \]

[_rational, _Riccati]

1.070

9332

\[ {}y^{\prime } x -y^{2}+1 = 0 \]

[_separable]

1.323

9333

\[ {}y^{\prime } x +a y^{2}-y+b \,x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.193

9334

\[ {}y^{\prime } x +a y^{2}-b y+c \,x^{2 b} = 0 \]

[_rational, _Riccati]

1.967

9335

\[ {}y^{\prime } x +a y^{2}-b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

1.972

9336

\[ {}y^{\prime } x +x y^{2}+a = 0 \]

[_rational, [_Riccati, _special]]

1.052

9337

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.743

9338

\[ {}y^{\prime } x +x y^{2}-y-a \,x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.198

9339

\[ {}y^{\prime } x +x y^{2}-\left (2 x^{2}+1\right ) y-x^{3} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.866

9340

\[ {}y^{\prime } x +a x y^{2}+2 y+b x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.370

9341

\[ {}y^{\prime } x +a x y^{2}+b y+c x +d = 0 \]

[_rational, _Riccati]

4.214

9342

\[ {}y^{\prime } x +x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b} = 0 \]

[_rational, _Riccati]

2.403

9343

\[ {}y^{\prime } x +a \,x^{\alpha } y^{2}+b y-c \,x^{\beta } = 0 \]

[_rational, _Riccati]

2.958

9344

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

2.159

9345

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

2.176

9346

\[ {}y^{\prime } x +f \left (x \right ) \left (y^{2}-x^{2}\right ) = 0 \]

[_Riccati]

1.416

9347

\[ {}y^{\prime } x +y^{3}+3 x y^{2} = 0 \]

[_rational, _Abel]

0.518

9348

\[ {}y^{\prime } x -\sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.894

9349

\[ {}y^{\prime } x +a \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

11.290

9350

\[ {}y^{\prime } x -x \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.295

9351

\[ {}y^{\prime } x -x \left (-x +y\right ) \sqrt {x^{2}+y^{2}}-y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.973

9352

\[ {}y^{\prime } x -x \,{\mathrm e}^{\frac {y}{x}}-y-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9.323

9353

\[ {}y^{\prime } x -y \ln \left (y\right ) = 0 \]

[_separable]

1.501

9354

\[ {}y^{\prime } x -y \left (\ln \left (y x \right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

1.645

9355

\[ {}y^{\prime } x -y \left (x \ln \left (\frac {x^{2}}{y}\right )+2\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.475

9356

\[ {}y^{\prime } x -\sin \left (x -y\right ) = 0 \]

[‘y=_G(x,y’)‘]

2.504

9357

\[ {}y^{\prime } x +\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

2.593

9358

\[ {}y^{\prime } x -x \sin \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.076

9359

\[ {}y^{\prime } x +x \cos \left (\frac {y}{x}\right )-y+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.892

9360

\[ {}y^{\prime } x +x \tan \left (\frac {y}{x}\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.316

9361

\[ {}y^{\prime } x -y f \left (y x \right ) = 0 \]

[[_homogeneous, ‘class G‘]]

0.881

9362

\[ {}y^{\prime } x -y f \left (x^{a} y^{b}\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

1.304

9363

\[ {}y^{\prime } x +a y-f \left (x \right ) g \left (x^{a} y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.289

9364

\[ {}\left (x +1\right ) y^{\prime }+\left (-x +y\right ) y = 0 \]

[_rational, _Bernoulli]

1.331

9365

\[ {}2 y^{\prime } x -y-2 x^{3} = 0 \]

[_linear]

1.835

9366

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

1.466

9367

\[ {}3 y^{\prime } x -3 x \ln \left (x \right ) y^{4}-y = 0 \]

[_Bernoulli]

3.149

9368

\[ {}x^{2} y^{\prime }+y-x = 0 \]

[_linear]

0.970

9369

\[ {}x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_linear]

1.382

9370

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

1.264

9371

\[ {}x^{2} y^{\prime }+y^{2}+y x +x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.678

9372

\[ {}x^{2} y^{\prime }-y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.810

9373

\[ {}x^{2} y^{\prime }-y^{2}-y x -x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.971

9374

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a \,x^{k}-b \left (b -1\right ) = 0 \]

[_rational, _Riccati]

2.205

9375

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.569

9376

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.561

9377

\[ {}x^{2} \left (y^{\prime }-y^{2}\right )-y a \,x^{2}+a x +2 = 0 \]

[_rational, _Riccati]

1.710

9378

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

1.423

9379

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )+b \,x^{\alpha }+c = 0 \]

[_rational, _Riccati]

2.331

9380

\[ {}x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2} = 0 \]

[_rational, _Abel]

0.529

9381

\[ {}x^{2} y^{\prime }+x y^{3}+a y^{2} = 0 \]

[_rational, _Abel]

0.524

9382

\[ {}x^{2} y^{\prime }+a \,x^{2} y^{3}+b y^{2} = 0 \]

[_rational, _Abel]

0.572

9383

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -1 = 0 \]

[_linear]

1.029

9384

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x -x \left (x^{2}+1\right ) = 0 \]

[_linear]

3.335

9385

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x -2 x^{2} = 0 \]

[_linear]

1.096

9386

\[ {}\left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 y x -1\right ) = 0 \]

[_rational, _Abel]

0.804

9387

\[ {}\left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )-x \left (x^{2}+1\right ) \cos \left (y\right )^{2} = 0 \]

[‘y=_G(x,y’)‘]

4.758

9388

\[ {}\left (x^{2}-1\right ) y^{\prime }-y x +a = 0 \]

[_linear]

2.063

9389

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

2.755

9390

\[ {}\left (x^{2}-1\right ) y^{\prime }+y^{2}-2 y x +1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.558

9391

\[ {}\left (x^{2}-1\right ) y^{\prime }-\left (-x +y\right ) y = 0 \]

[_rational, _Bernoulli]

2.520

9392

\[ {}\left (x^{2}-1\right ) y^{\prime }+a \left (y^{2}-2 y x +1\right ) = 0 \]

[_rational, _Riccati]

4.543

9393

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x = 0 \]

[_separable]

2.382

9394

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

2.438

9395

\[ {}\left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y^{2}-4 y = 0 \]

[_rational, _Bernoulli]

1.573

9396

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime }+3 y x -8 y+x^{2} = 0 \]

[_linear]

1.408

9397

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+y^{2}+k \left (y+x -a \right ) \left (y+x -b \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

3.069

9398

\[ {}2 x^{2} y^{\prime }-2 y^{2}-y x +2 a^{2} x = 0 \]

[_rational, _Riccati]

1.579

9399

\[ {}2 x^{2} y^{\prime }-2 y^{2}-3 y x +2 a^{2} x = 0 \]

[_rational, _Riccati]

1.745

9400

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (1+4 x \right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.297