2.14.1.27 problem 27 out of 2993

Link to actual problem [426] \[ \boxed {5 y^{\prime \prime }-2 y^{\prime } x +10 y=0} \] With the expansion point for the power series method at \(x = 0\).

type detected by program

{"second order series method. Ordinary point", "second order series method. Taylor series method"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {4}{375} x^{5}-\frac {4}{15} x^{3}+x\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\frac {4}{375} x^{5}-\frac {4}{15} x^{3}+x}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {hypergeom}\left (\left [-\frac {5}{2}\right ], \left [\frac {1}{2}\right ], \frac {x^{2}}{5}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {hypergeom}\left (\left [-\frac {5}{2}\right ], \left [\frac {1}{2}\right ], \frac {x^{2}}{5}\right )}\right ] \\ \end{align*}