2.14.1.98 problem 98 out of 2993

Link to actual problem [1133] \[ \boxed {4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y=0} \] Given that one solution of the ode is \begin {align*} y_1 &= {\mathrm e}^{2 x} \sqrt {x} \end {align*}

type detected by program

{"reduction_of_order", "second_order_bessel_ode", "second_order_change_of_variable_on_y_method_1"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, \sinh \left (2 x \right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\sqrt {x}\, \sinh \left (2 x \right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, \cosh \left (2 x \right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\sqrt {x}\, \cosh \left (2 x \right )}\right ] \\ \end{align*}