2.14.9.17 problem 817 out of 2993

Link to actual problem [6020] \[ \boxed {y^{\prime \prime }+3 x^{2} y^{\prime }-y x=0} \] With the expansion point for the power series method at \(x = 0\).

type detected by program

{"second order series method. Ordinary point", "second order series method. Taylor series method"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-x^{3}} x \operatorname {KummerM}\left (\frac {10}{9}, \frac {4}{3}, x^{3}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{x^{3}} y}{x \operatorname {KummerM}\left (\frac {10}{9}, \frac {4}{3}, x^{3}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-x^{3}} x \operatorname {KummerU}\left (\frac {10}{9}, \frac {4}{3}, x^{3}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{x^{3}} y}{x \operatorname {KummerU}\left (\frac {10}{9}, \frac {4}{3}, x^{3}\right )}\right ] \\ \end{align*}