2.14.10.44 problem 944 out of 2993

Link to actual problem [6607] \[ \boxed {2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

type detected by program

{"second order series method. Regular singular point. Difference not integer"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\sqrt {\frac {\left (2 \sqrt {x}+i\right ) \left (1+4 x \right )}{2 \sqrt {x}-i}}\, {\mathrm e}^{2 i \sqrt {x}}}{x}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x \,{\mathrm e}^{-2 i \sqrt {x}} y}{\sqrt {\frac {\left (2 \sqrt {x}+i\right ) \left (1+4 x \right )}{2 \sqrt {x}-i}}}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\sqrt {\frac {\left (2 \sqrt {x}-i\right ) \left (1+4 x \right )}{2 \sqrt {x}+i}}\, {\mathrm e}^{-2 i \sqrt {x}}}{x}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x \,{\mathrm e}^{2 i \sqrt {x}} y}{\sqrt {\frac {\left (2 \sqrt {x}-i\right ) \left (1+4 x \right )}{2 \sqrt {x}+i}}}\right ] \\ \end{align*}