2.14.10.51 problem 951 out of 2993

Link to actual problem [6621] \[ \boxed {4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y=0} \]

type detected by program

{"kovacic", "second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {{\mathrm e}^{i x} \left (x^{2}+3 i x -3\right )}{x^{\frac {5}{2}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-i x} x^{\frac {5}{2}} y}{x^{2}+3 i x -3}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= -\frac {{\mathrm e}^{-i x} \left (-x^{2}+3 i x +3\right )}{x^{\frac {5}{2}}}\right ] \\ \left [R &= x, S \left (R \right ) &= -\frac {{\mathrm e}^{i x} x^{\frac {5}{2}} y}{3 \left (i x -\frac {1}{3} x^{2}+1\right )}\right ] \\ \end{align*}