2.14.10.58 problem 958 out of 2993

Link to actual problem [6634] \[ \boxed {4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y=0} \]

type detected by program

{"second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, \operatorname {BesselJ}\left (0, 2 x \right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\sqrt {x}\, \operatorname {BesselJ}\left (0, 2 x \right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, \operatorname {BesselY}\left (0, 2 x \right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\sqrt {x}\, \operatorname {BesselY}\left (0, 2 x \right )}\right ] \\ \end{align*}