2.21.2.18 second_order_bessel_ode_form_A

These are odes of the form \(a y''+b y'+ \left (c e^{r x}-m\right ) y=0\) solved as Bessel ode using transformation \(x=\ln t\). Number of problems in this table is 10

Column notations: A is ODE degree. B is Program Number of solutions generated. C is CAS Number of solutions generated.

Table 2.616: second_order_bessel_ode_form_A

#

ODE

A

B

C

CAS classification

Solved?

Verified?

time (sec)

4744

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \]

1

1

1

[[_2nd_order, _with_linear_symmetries]]

0.094

9350

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries]]

0.193

9351

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries]]

0.22

9365

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.664

9366

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.569

11088

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries]]

0.382

11089

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries]]

0.369

11095

\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 x a} y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries]]

0.573

11096

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 x a} y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.893

11097

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

1

1

1

[[_2nd_order, _with_linear_symmetries]]

0.703