1.3.5 Example 5 \(ty^{\prime }+y=0\)
\[ ty^{\prime }+y=0 \]
We will use the property
\[\mathcal {L}\left ( tf\left ( t\right ) \right ) =-\frac {d}{ds}F\left ( s\right ) \]
Hence taking Laplace transform of each term of the ode gives
\begin{align*}\mathcal {L}\left ( ty^{\prime }\right ) & =-\frac {d}{ds}\left ( \mathcal {L}\left ( y^{\prime }\right ) \right ) \\ & =-\frac {d}{ds}\left ( sY-y\left ( 0\right ) \right ) \\ & =-\left ( Y+s\frac {dY}{ds}\right ) \\ & =-s\frac {dY}{ds}-Y \end{align*}
And
\[\mathcal {L}\left ( y\right ) =Y \]
Hence the ode becomes in Laplace domain as
\begin{align*} -s\frac {dY}{ds}-Y+Y & =0\\ -s\frac {dY}{ds} & =0\\ \frac {dY}{ds} & =0 \end{align*}
Solving this ode for \(Y\left ( s\right ) \) gives
\begin{equation} Y=c_{1} \tag {1}\end{equation}
Taking inverse Laplace gives
\[ y\left ( t\right ) =\delta \left ( t\right ) c_{1}\]
Since no initial conditions are given, then the above is the
final solution. Notice that \(y\left ( 0\right ) \) do not have to be known, since it cancels out in the above. What is left is the \(c_{1}\) which is
generated from solve the ode in \(Y\left ( s\right ) \).