This section takes a closer look at orbits and tangent vectors
Hence
Comparing (2) to equation of motion where
As
Different
This is Abel type ode. Also Homogeneous class A
It has two solutions. One solution is given by Mathematica as
The program starts from the same
The source code used to generate the above plot is
<<MaTeX` ode=y'[x]==(x-y[x])/(x+y[x]); ysol=DSolve[ode,y[x],x] ysol=-x-Sqrt[C[1]+2 x^2]; x1 = 1.5; y1 = ysol /. {C[1] -> 1, x -> x1}; ysol2=ysol/.C[1]->1.1 getSolutions[inf_List, titles_List, x_Symbol, ysol1_, ysol2_, x1_, y1_, from_, to_] := Module[{xbar, ybar, eps, eq, soleps, p, data, n, xi, eta, texStyle}, data = Table[0, {n, Length@inf}]; texStyle = {FontFamily -> "Latin Modern Roman", FontSize -> 12}; Do[ xi = First[inf[[n]]]; eta = Last[inf[[n]]]; xbar = x1 + eps*xi ; ybar = y1 + eps*eta; eq = ybar == ysol2 /. x -> xbar; soleps = SolveValues[eq, eps]; soleps = First@SortBy[soleps, Abs]; ybar = ybar /. eps -> soleps; xbar = xbar /. eps -> soleps; p = Plot[{ysol1, ysol2}, {x, from, to}, PlotLabel -> MaTeX[titles[[n]], Magnification -> 1.5], BaseStyle -> texStyle, Epilog -> {{Arrowheads[.02], Arrow[{{x1, y1}, {xbar, ybar}}]}, Text[MaTeX["\\left( x,y \\right)"], {x1, y1}, {-1, -1}], Text[ MaTeX["\\left( \\bar{x},\\bar{y}\\right)"], {xbar, ybar}, {1, 1}]}, ImageSize -> 400]; data[[n]] = p , {n, 1, Length@inf} ]; data ]; inf = {{1/x1, -1/x1}, {0, 1/(x1 + y1)}, {-(x1^2 - 2*x1*y1 - y1^2)/(x1 - y1), 0}, {2*x1 + y1, x1} }; titles = {"\\xi=\\frac{1}{x},\\eta=-\\frac{1}{x}", "\\xi=0,\\eta=\\frac{1}{x+y}", "\\xi=\\frac{-(x^2-2 x y-y^2)}{x=y},\\eta=0", "\\xi=2 x+y,\\eta=x"}; data = getSolutions[inf, titles, x, ysol /. C[1] -> 1, ysol2, x1, y1, 1.45, 1.51]; p = Grid[Partition[data, 2], Frame -> All, Spacings -> {1, 1}]