2.6 \(\int \tan (x) \sqrt {\tan ^4(x)+1} \,dx\)
2.6.1 Mathematica
ClearAll[x]
integrand = Tan[x] Sqrt[1 + Tan[x]^4];
res = Integrate[integrand, x];
TeXForm[res]
\[
\frac {\sqrt {\tan ^4(x)+1} \left (\sqrt {\cos (4 x)+3}-2 \sqrt {2} \cos ^2(x) \sinh ^{-1}(\cos (2 x))-2 \cos ^2(x) \tanh ^{-1}\left (\frac {2 \sin ^2(x)}{\sqrt {\cos (4 x)+3}}\right )\right )}{2 \sqrt {\cos (4 x)+3}}
\]
2.6.2 Rubi
<< Rubi`
ClearAll[x]
integrand = Tan[x] Sqrt[1 + Tan[x]^4];
res = Int[integrand, x];
TeXForm[res]
\[
\frac {1}{2} \sqrt {\tan ^4(x)+1}-\frac {\tanh ^{-1}\left (\frac {1-\tan ^2(x)}{\sqrt {2} \sqrt {\tan ^4(x)+1}}\right )}{\sqrt {2}}-\frac {1}{2} \sinh ^{-1}\left (\tan ^2(x)\right )
\]
2.6.3 Maple
restart;
integrand := tan(x)*sqrt(1 + tan(x)^4);
res:=int(integrand,x);
latex(res)
\[
{\frac {1}{2}\sqrt { \left ( 1+ \left ( \tan \left ( x \right ) \right ) ^ {2} \right ) ^{2}-2\, \left ( \tan \left ( x \right ) \right ) ^{2}}}-{ \frac {{\rm arcsinh} \left ( \left ( \tan \left ( x \right ) \right ) ^{2} \right )}{2}}-{\frac {\sqrt {2}}{2}{\rm arctanh} \left ({\frac { \left ( -2\, \left ( \tan \left ( x \right ) \right ) ^{2}+2 \right ) \sqrt {2}}{4 }{\frac {1}{\sqrt { \left ( 1+ \left ( \tan \left ( x \right ) \right ) ^{ 2} \right ) ^{2}-2\, \left ( \tan \left ( x \right ) \right ) ^{2}}}}} \right )}
\]
2.6.4 Fricas
set output tex off
setSimplifyDenomsFlag(true)
integrand := tan(x)*sqrt(1 + tan(x)^4);
res:=integrate(integrand,x);
latex(res)
\[ {{2 \ {\log \left ( {{{\sqrt {{{{{\tan \left ( {x} \right )}} \sp {4}}+1}}} -{ {{\tan \left ( {x} \right )}} \sp {2}}}} \right )}}+{{\sqrt {2}} \ {\log \left ( {{{{{\left ( {2 \ {\sqrt {2}} \ {{{\tan \left ( {x} \right )}} \sp {2}}} -{2 \ {\sqrt {2}}} \right )} \ {\sqrt {{{{{\tan \left ( {x} \right )}} \sp {4}}+1} }}}+{3 \ {{{\tan \left ( {x} \right )}} \sp {4}}} -{2 \ {{{\tan \left ( {x} \right )}} \sp {2}}}+3} \over {{{{\tan \left ( {x} \right )}} \sp {4}}+{2 \{{{\tan \left ( {x} \right )}} \sp {2}}}+1}}} \right )}}+{2 \ {\sqrt {{{{{\tan \left ( {x} \right )}} \sp {4}}+1}}}}} \over 4 \]
2.6.5 Maxima
integrand : tan(x)*sqrt(1 + tan(x)^4);
res : integrate(integrand,x);
tex(res);
\[
\text {did not solve}
\]
2.6.6 XCAS
integrand := tan(x)*sqrt(1 + tan(x)^4);
res := integrate(integrand,x);
latex(res)
\[
\frac {\sqrt {\tan ^{4}x+1}+2 \left (\frac {\ln \left (\sqrt {\tan ^{4}x+1}-\tan ^{2}x\right )}{2}+\frac {\ln \left (\frac {-2 \left (\sqrt {\tan ^{4}x+1}-\tan ^{2}x\right )+2+2 \sqrt {2}}{2 \left (\sqrt {\tan ^{4}x+1}-\tan ^{2}x\right )-2+2 \sqrt {2}}\right )}{\sqrt {2}}\right )}{2}
\]
2.6.7 Sympy
>python
Python 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0] :: Anaconda, Inc. on linux
from sympy import *
x = symbols('x')
integrand = tan(x)*sqrt(1 + tan(x)**4);
res = integrate(integrand,x);
latex(res)
\[
\text {did not solve}
\]
2.6.8 MuPad
evalin(symengine,'int(tan(x)*sqrt(1 + tan(x)^4),x)')
\[
\text {did not solve}
\]