3.1  HW 1

  3.1.1  Questions
  3.1.2  Problem 2.1
  3.1.3  Problem 2.2
  3.1.4  Problem 2.3
  3.1.5  Problem 2.4
  3.1.6  Key solution
PDF (letter size)
PDF (legal size)

3.1.1  Questions

PDF

3.1.2  Problem 2.1

   3.1.2.1  part(a)
   3.1.2.2  part(b)
   3.1.2.3  part(c)
   3.1.2.4  part(d)
   3.1.2.5  part(e)

3.1.2.1 part(a)

Let \(\digamma \left ( g\left ( t\right ) \right ) \) be the Fourier Transform of \(g\left ( t\right ) \), i.e. \(\digamma \left ( g\left ( t\right ) \right ) =G\left ( f\right ) \). First we use the given hint and note that \(g\left ( t\right ) \) can be written as follows\[ g\left ( t\right ) =A\cos \left ( \frac{\pi t}{T}\right ) \ rect\left ( \frac{t}{T}\right ) \] Start by writing \(\frac{\pi t}{T}\)as \(2\pi f_{0}t\), where \(f_{0}=\frac{1}{2T}\). Now using the property that multiplication in time domain is the same as convolution in frequency domain, we obtain \begin{equation} G\left ( f\right ) =\digamma \left ( A\cos \left ( 2\pi f_{0}t\right ) \right ) \otimes \digamma \left ( rect\left ( \frac{t}{T}\right ) \right ) \tag{1} \end{equation} But \begin{align*} \digamma \left ( A\cos \left ( 2\pi f_{0}t\right ) \right ) & =A\ \digamma \left ( \cos \left ( 2\pi f_{0}t\right ) \right ) \\ & =A\ \digamma \left ( \frac{e^{j2\pi f_{0}t}+e^{-j2\pi f_{0}t}}{2}\right ) \\ & =\frac{A}{2}\ \digamma \left ( e^{j2\pi f_{0}t}+e^{-j2\pi f_{0}t}\right ) \\ & =\frac{A}{2}\left [ \ \digamma \left ( e^{j2\pi f_{0}t}\right ) +\ \digamma \left ( e^{-j2\pi f_{0}t}\right ) \right ] \end{align*}

But \(\digamma \left ( e^{j2\pi f_{0}t}\right ) =\delta \left ( f-f_{0}\right ) \) and \(\digamma \left ( e^{-j2\pi f_{0}t}\right ) =\delta \left ( f+f_{0}\right ) \)hence the above becomes\begin{equation} \digamma \left ( A\cos \left ( 2\pi f_{0}t\right ) \right ) =\frac{A}{2}\left [ \ \delta \left ( f-f_{0}\right ) +\ \delta \left ( f+f_{0}\right ) \right ] \tag{2} \end{equation} Substitute (2) into (1) we obtain\[ G\left ( f\right ) =\frac{A}{2}\left [ \ \delta \left ( f-f_{0}\right ) +\ \delta \left ( f+f_{0}\right ) \right ] \otimes \digamma \left ( rect\left ( \frac{t}{T}\right ) \right ) \] But \(\digamma \left ( rect\left ( \frac{t}{T}\right ) \right ) =T\operatorname{sinc}\left ( fT\right ) \), hence the above becomes\[ \digamma \left ( g\left ( t\right ) \right ) =\frac{A}{2}\left [ \ \delta \left ( f-f_{0}\right ) +\ \delta \left ( f+f_{0}\right ) \right ] \otimes T\operatorname{sinc}\left ( fT\right ) \] Now using the property of convolution with a delta, we obtain\[ \fbox{$G\left ( f\right ) =\frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \right ] $}\] note: by doing more trigonometric manipulations, the above can be written as\[ \fbox{$G\left ( f\right ) =\frac{2AT\cos \left ( \pi fT\right ) }{\pi \left ( 1-4f^{2}T^{2}\right ) }$}\]

3.1.2.2 part(b)

Apply the time shifting property \(g\left ( t\right ) \Longleftrightarrow G\left ( f\right ) \), hence \(g\left ( t-t_{0}\right ) \Longleftrightarrow e^{-j2\pi ft_{0}}G\left ( f\right ) \)

From part(a) we found that \(\digamma \left ( g\left ( t\right ) \right ) =\frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \right ] \), so in this part, the function in part(a) is shifted in time to the right by amount \(\frac{T}{2}\), let the new function be \(h\left ( t\right ) \,,\)hence we need to multiply \(G\left ( f\right ) \) by \(e^{-j2\pi f\frac{T}{2}}\) ,hence\begin{align*} \digamma \left ( g\left ( t-\frac{T}{2}\right ) \right ) & =F\left ( h\left ( t\right ) \right ) \\ & =H\left ( f\right ) \\ & =e^{-j\pi fT}\left ( \frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \right ] \right ) \end{align*}

3.1.2.3 part(c)

Using the time scaling property \(g\left ( t\right ) \Longleftrightarrow G\left ( f\right ) \), hence \(g\left ( at\right ) \Longleftrightarrow \frac{1}{\left \vert a\right \vert }G\left ( \frac{f}{a}\right ) \), and since we found in part(b) that \(H\left ( f\right ) =e^{-j\pi fT}\left ( \frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \right ] \right ) \), hence \[ \fbox{$\digamma \left \{ h\left ( at\right ) \right \} =\frac{1}{\left \vert a\right \vert }e^{-j\pi \frac{f}{a}T}\left ( \frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( \frac{f}{a}-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( \frac{f}{a}+f_{0}\right ) T\right ) \right ] \right ) $}\]

3.1.2.4 part(d)

Let \(f\left ( t\right ) \) be the function which is shown in figure 2.4c, we see that \[ f\left ( t\right ) =-h\left ( -t\right ) \] where \(h\left ( t\right ) \) is the function shown in figure 2.4(b). We found in part(b) that \[ H\left ( f\right ) =e^{-j\pi fT}\left ( \frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \right ] \right ) \] Now using the property that \(h\left ( t\right ) \Longleftrightarrow H\left ( f\right ) \) then \(h\left ( -t\right ) \Longleftrightarrow \frac{1}{\left \vert -1\right \vert }H\left ( -f\right ) =H\left ( -f\right ) \), hence \[ \fbox{$\digamma \left \{ f\left ( t\right ) \right \} =-e^{j\pi fT}\left ( \frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( -f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( -f+f_{0}\right ) T\right ) \right ] \right ) $}\]

3.1.2.5 part(e)

This function, call it \(g_{1}\left ( t\right ) ,\) is the sum of the functions shown in figure 2.4(b) and figure 2.4(c), then the Fourier transform of \(g_{1}\left ( t\right ) \) is the sum of the Fourier transforms of the functions in these two figures (using the linearity of the Fourier transforms). Hence \begin{align*} \digamma \left ( g_{1}\left ( t\right ) \right ) & =e^{-j\pi fT}\left ( \frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \right ] \right ) \\ & -e^{j\pi fT}\left ( \frac{AT}{2}\left [ \ \operatorname{sinc}\left ( \left ( -f-f_{0}\right ) T\right ) +\ \operatorname{sinc}\left ( \left ( -f+f_{0}\right ) T\right ) \right ] \right ) \end{align*}

The above can be simplified to\begin{align*} \digamma \left ( g_{1}\left ( t\right ) \right ) & =\frac{AT}{2}\left ( \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \left [ e^{j\pi fT}+\ e^{-j\pi fT}\right ] +\operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) \left [ e^{j\pi fT}+e^{-j\pi fT}\right ] \right ) \\ & =\frac{AT}{2}\left ( \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) \left [ 2\cos \left ( \pi fT\right ) \right ] +\operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) \left [ 2\cos \left ( \pi fT\right ) \right ] \right ) \end{align*}

Hence \[ \fbox{$\digamma \left ( g_{1}\left ( t\right ) \right ) =AT\cos \left ( \pi fT\right ) \left [ \operatorname{sinc}\left ( \left ( f+f_{0}\right ) T\right ) +\operatorname{sinc}\left ( \left ( f-f_{0}\right ) T\right ) \right ] $}\]

3.1.3  Problem 2.2

Given \(g\left ( t\right ) =e^{-t}\sin \left ( 2\pi f_{c}t\right ) u\left ( t\right ) \) find \(\digamma \left ( g\left ( t\right ) \right ) \) Answer:\begin{equation} \digamma \left ( g\left ( t\right ) \right ) =\digamma \left ( e^{-t}u\left ( t\right ) \right ) \otimes \digamma \left ( \sin \left ( 2\pi f_{c}t\right ) \right ) \tag{1} \end{equation} But \begin{equation} \digamma \left ( \sin \left ( 2\pi f_{0}t\right ) \right ) =\frac{1}{2j}\left [ \delta \left ( f-f_{c}\right ) -\delta \left ( f+f_{c}\right ) \right ] \tag{2} \end{equation} and\begin{align} \digamma \left ( e^{-t}u\left ( t\right ) \right ) & ={\displaystyle \int \limits _{0}^{\infty }} e^{-t}e^{-j2\pi ft}dt={\displaystyle \int \limits _{0}^{\infty }} e^{-t\left ( 1+j2\pi f\right ) }dt\nonumber \\ & =\frac{\left [ e^{-t\left ( 1+j2\pi f\right ) }\right ] _{0}^{\infty }}{-\left ( 1+j2\pi f\right ) }=\frac{0-1}{-\left ( 1+j2\pi f\right ) }\nonumber \\ & =\frac{1}{1+j2\pi f} \tag{3} \end{align}

Substitute (2) and (3) into (1) we obtain\begin{align*} \digamma \left ( g\left ( t\right ) \right ) & =\frac{1}{2j}\left [ \delta \left ( f-f_{c}\right ) -\delta \left ( f+f_{c}\right ) \right ] \otimes \frac{1}{1+j2\pi f}\\ & =\frac{1}{2j}\left [ \frac{1}{1+j2\pi \left ( f-f_{c}\right ) }-\frac{1}{1+j2\pi \left ( f+f_{c}\right ) }\right ] \end{align*}

3.1.4  Problem 2.3

   3.1.4.1  part(a)
   3.1.4.2  part(b)

3.1.4.1 part(a)

\begin{align*} g\left ( t\right ) & =A\ rect\left ( \frac{t}{T}-\frac{1}{2}\right ) \\ & =A\ rect\left ( \frac{t-\frac{T}{2}}{T}\right ) \end{align*}

hence it is a rect function with duration \(T\) and centered at \(\frac{T}{2}\) and it has height \(A\)\begin{align} g_{e} & =\frac{g\left ( t\right ) +g\left ( -t\right ) }{2}\tag{1}\\ g_{o} & =\frac{g\left ( t\right ) -g\left ( -t\right ) }{2}\nonumber \end{align}

Hence \(g_{e}=\frac{1}{2}\left [ A\ rect\left ( \frac{t}{T}-\frac{1}{2}\right ) +A\ rect\left ( \frac{-t}{T}-\frac{1}{2}\right ) \right ] \) which is a rectangular pulse of duration \(2T\) and centered at zero and height \(A\)

\(g_{o}=\frac{1}{2}\left [ A\ rect\left ( \frac{t}{T}-\frac{1}{2}\right ) -A\ rect\left ( \frac{-t}{T}-\frac{1}{2}\right ) \right ] \) which is shown in the figure below

pict
Figure 3.1:rectangular pulse
3.1.4.2 part(b)

\begin{align} \digamma \left ( g\left ( t\right ) \right ) & =\digamma \left ( A\ rect\left ( \frac{t-\frac{T}{2}}{T}\right ) \right ) \nonumber \\ & =AT\ \operatorname{sinc}\left ( fT\right ) \ e^{-j2\pi f\frac{T}{2}}\nonumber \\ & =AT\ \operatorname{sinc}\left ( fT\right ) \ e^{-j\pi fT} \tag{2} \end{align}

Now using the property that \(g\left ( t\right ) \Leftrightarrow G\left ( f\right ) \), then \(g\left ( -t\right ) \Leftrightarrow G\left ( -f\right ) \), then we write\begin{align} \digamma \left ( g\left ( -t\right ) \right ) & =G\left ( -f\right ) \nonumber \\ & =AT\ \operatorname{sinc}\left ( -fT\right ) \ e^{j\pi fT} \tag{3} \end{align}

Now, using linearity of Fourier transform, then from (1) we obtain

\begin{align*} \digamma \left ( g_{e}\left ( t\right ) \right ) & =\digamma \left ( \frac{g\left ( t\right ) +g\left ( -t\right ) }{2}\right ) \\ & =\frac{1}{2}\left [ \digamma \left ( g\left ( t\right ) \right ) +\digamma \left ( g\left ( -t\right ) \right ) \right ] \\ & =\frac{1}{2}\left [ AT\ \operatorname{sinc}\left ( fT\right ) \ e^{-j\pi fT}+AT\ \operatorname{sinc}\left ( -fT\right ) \ e^{j\pi fT}\right ] \\ & =\frac{AT}{2}\left [ \operatorname{sinc}\left ( fT\right ) \ e^{-j\pi fT}+\operatorname{sinc}\left ( -fT\right ) \ e^{j\pi fT}\right ] \end{align*}

now \(\operatorname{sinc}\left ( -fT\right ) =\frac{\sin \left ( -\pi fT\right ) }{-\pi fT}=\frac{-\sin \left ( \pi fT\right ) }{-\pi fT}=\operatorname{sinc}\left ( fT\right ) \), hence the above becomes

\begin{align*} \digamma \left ( g_{e}\left ( t\right ) \right ) & =\frac{AT\operatorname{sinc}\left ( fT\right ) }{2}\left [ \ e^{-j\pi fT}+\ e^{j\pi fT}\right ] \\ & =\frac{AT\operatorname{sinc}\left ( fT\right ) }{2}\left [ \ 2\cos \left ( \pi fT\right ) \right ] \end{align*}

Hence\[ \fbox{$\digamma \left ( g_{e}\left ( t\right ) \right ) =AT\operatorname{sinc}\left ( fT\right ) \cos \left ( \pi fT\right ) $}\] Now to find the Fourier transform of the odd part

\[ g_{o}=\frac{g\left ( t\right ) -g\left ( -t\right ) }{2}\]

Hence\begin{align*} \digamma \left ( g_{o}\left ( t\right ) \right ) & =\digamma \left ( \frac{g\left ( t\right ) -g\left ( -t\right ) }{2}\right ) \\ & =\frac{1}{2}\left [ \digamma \left ( g\left ( t\right ) \right ) -\digamma \left ( g\left ( -t\right ) \right ) \right ] \\ & =\frac{1}{2}\left [ AT\ \operatorname{sinc}\left ( fT\right ) \ e^{-j\pi fT}-AT\ \operatorname{sinc}\left ( -fT\right ) \ e^{j\pi fT}\right ] \\ & =\frac{AT}{2}\left [ \operatorname{sinc}\left ( fT\right ) \ e^{-j\pi fT}-\operatorname{sinc}\left ( fT\right ) \ e^{j\pi fT}\right ] \\ & =\frac{AT\operatorname{sinc}\left ( fT\right ) }{2}\left [ \ e^{-j\pi fT}-\ e^{j\pi fT}\right ] \\ & =\frac{-AT\operatorname{sinc}\left ( fT\right ) }{2}\left [ \ e^{j\pi fT}-e^{-j\pi fT}\right ] \\ & =\frac{-AT\operatorname{sinc}\left ( fT\right ) }{2}\left [ \ 2j\sin \left ( \pi fT\right ) \right ] \end{align*}

Hence\[ \fbox{$\digamma \left ( g_{o}\left ( t\right ) \right ) =-jAT\operatorname{sinc}\left ( fT\right ) \sin \left ( \pi fT\right ) $}\]

3.1.5  Problem 2.4

\[ G\left ( f\right ) =\left \vert G\left ( f\right ) \right \vert e^{j\arg \left ( G\left ( f\right ) \right ) }\] Hence from the diagram given, we write\[ G\left ( f\right ) =\left \{ \begin{array} [c]{ccc}1\times e^{j\frac{\pi }{2}} & & -W\leq f<0\\ 1\times e^{-j\frac{\pi }{2}} & & 0\leq f\leq W \end{array} \right . \] Therefore, we can use a rect function now to express \(G\left ( f\right ) \) over the whole \(f\) range as follows\[ G\left ( f\right ) =e^{j\frac{\pi }{2}}\ rect\left ( \frac{f+\frac{W}{2}}{W}\right ) -e^{-j\frac{\pi }{2}}rect\left ( \frac{f-\frac{W}{2}}{W}\right ) \] Now, noting that \(\delta \left ( t-t_{0}\right ) \Leftrightarrow e^{-j2\pi t_{0}}\) and \(\delta \left ( t+t_{0}\right ) \Leftrightarrow e^{j2\pi t_{0}}\) and \(W\operatorname{sinc}\left ( tW\right ) \Leftrightarrow rect\left ( \frac{f}{W}\right ) \) and noting that shift in frequency by \(\frac{W}{2}\)becomes multiplication by \(e^{-j2\pi t\frac{W}{2}}\), then now we write

\begin{align*} g\left ( t\right ) & =\digamma ^{-1}\left ( e^{j\frac{\pi }{2}}\ rect\left ( \frac{f+\frac{W}{2}}{W}\right ) \right ) -\digamma ^{-1}\left ( e^{-j\frac{\pi }{2}}rect\left ( \frac{f-\frac{W}{2}}{W}\right ) \right ) \\ & =\digamma ^{-1}\left ( e^{j\frac{\pi }{2}}\right ) \ \otimes \digamma ^{-1}\left ( rect\left ( \frac{f+\frac{W}{2}}{W}\right ) \right ) -\digamma ^{-1}\left ( e^{-j\frac{\pi }{2}}\right ) \ \otimes \digamma ^{-1}\left ( rect\left ( \frac{f-\frac{W}{2}}{W}\right ) \right ) \end{align*}

Hence\begin{align*} g\left ( t\right ) & =\left [ \delta \left ( t+\frac{\pi }{2}\right ) \otimes W\operatorname{sinc}\left ( tW\right ) e^{-j2\pi t\frac{W}{2}}\right ] -\left [ \delta \left ( t-\frac{\pi }{2}\right ) \otimes W\operatorname{sinc}\left ( tW\right ) e^{j2\pi t\frac{W}{2}}\right ] \\ & =W\operatorname{sinc}\left ( \left ( t+\frac{\pi }{2}\right ) W\right ) e^{-j2\pi \left ( t+\frac{\pi }{2}\right ) \frac{W}{2}}-W\operatorname{sinc}\left ( \left ( t-\frac{\pi }{2}\right ) W\right ) e^{j2\pi \left ( t-\frac{\pi }{2}\right ) \frac{W}{2}}\\ & =W\operatorname{sinc}\left ( \left ( t+\frac{\pi }{2}\right ) W\right ) e^{-j\pi Wt-j\pi W\frac{\pi }{2}}-W\operatorname{sinc}\left ( \left ( t-\frac{\pi }{2}\right ) W\right ) e^{j\pi Wt-j\pi W\frac{\pi }{2}} \end{align*}

Hence\[ \fbox{$g\left ( t\right ) =We^{-\frac{j\pi ^{2}W}{2}}\left ( \operatorname{sinc}\left ( \left ( t+\frac{\pi }{2}\right ) W\right ) e^{-j\pi Wt}-\operatorname{sinc}\left ( \left ( t-\frac{\pi }{2}\right ) W\right ) e^{j\pi Wt}\right ) $}\]

3.1.6  Key solution

PDF