3.2  HW 2

  3.2.1  Questions
  3.2.2  Problem 2.30
  3.2.3  Problem 2.32
  3.2.4  Problem 2.33
  3.2.5  Problem 2.35
  3.2.6  extra Problem
  3.2.7  Key solution
PDF (letter size)
PDF (legal size)

3.2.1  Questions

PDF

3.2.2  Problem 2.30

   3.2.2.1  part(b)
   3.2.2.2  part(c)

Problem

Determine and sketch the autocorrelation function of the following

(b) \(g\left ( t\right ) =e^{-a\left \vert t\right \vert }\)

(c) \(g\left ( t\right ) =e^{-at}u\left ( t\right ) -e^{at}u\left ( -t\right ) \)

3.2.2.1 part(b)

\[ g\left ( t\right ) =\left \{ \begin{array} [c]{ccc}e^{-at} & & t>0\\ 1 & & t=0\\ e^{at} & & t<0 \end{array} \right . \]

Assume \(a>0\) for the integral to be defined. From definition, autocorrelation of a function \(g\left ( t\right ) \) is

\[ R\left ( \tau \right ) =\int _{-\infty }^{\infty }g\left ( t\right ) g^{\ast }\left ( t-\tau \right ) dt \]

Since \(g\left ( t\right ) \) in this case is real, then \(g^{\ast }\left ( t-\tau \right ) =g\left ( t-\tau \right ) \), hence

\[ R\left ( \tau \right ) =\int _{-\infty }^{\infty }g\left ( t\right ) g\left ( t-\tau \right ) dt \]

Consider the 3 cases, \(\tau <0\) and \(\tau >0\) and when \(\tau =0\)

case \(\tau >0\)

pict
Figure 3.2:Case 1 Part b

Break the integral over the 3 regions, \(\left \{ -\infty ,0\right \} ,\left \{ 0,\tau \right \} ,\left \{ \tau ,\infty \right \} \)

\[ R\left ( \tau \right ) =\int _{-\infty }^{0}e^{at}e^{a(t-\tau )}dt+\int _{0}^{\tau }e^{-at}e^{a(t-\tau )}dt+\int _{\tau }^{\infty }e^{-at}e^{-a(t-\tau )}dt \]

But \(\int _{-\infty }^{0}e^{at}e^{a(t-\tau )}dt=e^{-a\tau }\int _{-\infty }^{0}e^{2at}dt=e^{-a\tau }\frac{\left [ e^{2at}\right ] _{-\infty }^{0}}{2a}=e^{-a\tau }\frac{\left [ 1-0\right ] }{2a}=\frac{e^{-a\tau }}{2a}\)

and \(\int _{0}^{\tau }e^{-at}e^{a(t-\tau )}dt=e^{-a\tau }\int _{0}^{\tau }1dt=\tau e^{-a\tau }\)

and \(\int _{\tau }^{\infty }e^{-at}e^{-a(t-\tau )}dt=e^{a\tau }\int _{\tau }^{\infty }e^{-2at}dt=e^{a\tau }\frac{\left [ e^{-2at}\right ] _{\tau }^{\infty }}{-2a}=e^{a\tau }\frac{\left [ 0-e^{-2a\tau }\right ] }{-2a}=\frac{e^{-a\tau }}{2a}\)

Hence for \(\tau >0\) we obtain

\begin{align*} R\left ( \tau \right ) & =\frac{e^{-a\tau }}{2a}+\tau e^{-a\tau }+\frac{e^{-a\tau }}{2a}\\ & =\frac{e^{-a\tau }}{a}+\tau e^{-a\tau }\\ & =\fbox{$e^{-a\tau }\left ( \frac{1}{a}+\tau \right ) $} \end{align*}

case \(\tau <0\)

pict
Figure 3.3:Case 2 Part b

Break the integral over the 3 regions, \(\left \{ -\infty ,\tau \right \} ,\left \{ \tau ,0\right \} ,\left \{ 0,\infty \right \} \)

\[ R\left ( \tau \right ) =\int _{-\infty }^{\tau }e^{at}e^{a(t-\tau )}dt+\int _{\tau }^{0}e^{-at}e^{a(t-\tau )}dt+\int _{0}^{\infty }e^{-at}e^{-a(t-\tau )}dt \]

Now \(\int _{-\infty }^{\tau }e^{at}e^{a(t-\tau )}dt=e^{-a\tau }\int _{-\infty }^{\tau }e^{2at}dt=e^{-a\tau }\frac{\left [ e^{2at}\right ] _{-\infty }^{\tau }}{2a}=e^{-a\tau }\frac{\left [ e^{2a\tau }-0\right ] }{2a}=\frac{e^{a\tau }}{2a}\)

and \(\int _{\tau }^{0}e^{-at}e^{a(t-\tau )}dt=e^{-a\tau }\int _{\tau }^{0}1dt=-\tau e^{-a\tau }\)

and \(\int _{0}^{\infty }e^{-at}e^{-a(t-\tau )}dt=e^{a\tau }\frac{\left [ e^{-2at}\right ] _{0}^{\infty }}{-2a}=\frac{e^{a\tau }}{-2a}\left ( 0-1\right ) =\frac{e^{a\tau }}{2a}\)

Hence \begin{align*} R\left ( \tau \right ) & =\frac{e^{a\tau }}{2a}-\tau e^{-a\tau }+\frac{e^{a\tau }}{2a}\\ & =\fbox{$e^{a\tau }\left ( \frac{1}{a}-\tau \right ) $} \end{align*}

When \(\tau =0\)

\(R\left ( 0\right ) \) gives the the maximum power in the signal \(g\left ( t\right ) \). Now evaluate this

\begin{align*} R\left ( \tau \right ) & =\int _{-\infty }^{0}e^{at}e^{at}dt+\int _{0}^{\infty }e^{-at}e^{-at}dt\\ & =\frac{\left [ e^{2at}\right ] _{-\infty }^{0}}{2a}+\frac{\left [ e^{-2at}\right ] _{0}^{\infty }}{-2a}\\ & =\frac{1}{a} \end{align*}

Hence

\[ R\left ( \tau \right ) =\left \{ \begin{array} [c]{ccc}e^{-a\tau }\left ( \frac{1}{a}+\tau \right ) & & \tau >0\\ \frac{1}{a} & & \tau =0\\ e^{a\tau }\left ( \frac{1}{a}-\tau \right ) & & \tau <0 \end{array} \right . \]

Or we could write

\[ \fbox{$R\left ( \tau \right ) =e^{-\left \vert \tau \right \vert a}\left ( \frac{1}{a}-(-\left \vert \tau \right \vert \right ) $}\]

This is a plot of \(R\left ( \tau \right ) \), first plot is for \(a=1\) and the second for \(a=4\)

pict
Figure 3.4:final part
3.2.2.2 part(c)

\[ g\left ( t\right ) =e^{-at}u\left ( t\right ) -e^{at}u\left ( -t\right ) \]

Assume \(a>0.\)

Consider the 3 cases, \(\tau <0\) and \(\tau >0\) and when \(\tau =0\)

case \(\tau >0\)

pict
Figure 3.5:Case 1 Part c

Break the integral into 3 parts, \(\left \{ -\infty ,0\right \} ,\left \{ 0,\tau \right \} ,\left \{ \tau ,\infty \right \} \)

\begin{align*} R\left ( \tau \right ) & =\int _{-\infty }^{0}g\left ( t\right ) g\left ( t-\tau \right ) dt+\int _{0}^{\tau }g\left ( t\right ) g\left ( t-\tau \right ) dt+\int _{\tau }^{\infty }g\left ( t\right ) g\left ( t-\tau \right ) dt\\ & =\int _{-\infty }^{0}-e^{at}\left ( -e^{a\left ( t-\tau \right ) }\right ) dt+\int _{0}^{\tau }e^{-at}\left ( -e^{a\left ( t-\tau \right ) }\right ) dt+\int _{\tau }^{\infty }e^{-at}\left ( e^{-a\left ( t-\tau \right ) }\right ) dt\\ & =e^{-a\tau }\int _{-\infty }^{0}e^{2at}dt-e^{-a\tau }\int _{0}^{\tau }1dt+e^{a\tau }\int _{\tau }^{\infty }e^{-2at}dt\\ & =e^{-a\tau }\frac{\left [ e^{2at}\right ] _{-\infty }^{0}}{2a}-\tau e^{-a\tau }+e^{a\tau }\frac{\left [ e^{-2at}\right ] _{\tau }^{\infty }}{-2a}\\ & =e^{-a\tau }\frac{\left [ 1-0\right ] }{2a}-\tau e^{-a\tau }+e^{a\tau }\frac{\left [ 0-e^{-2a\tau }\right ] }{-2a}\\ & =\frac{e^{-a\tau }}{2a}-\tau e^{-a\tau }+\frac{e^{-a\tau }}{2a}\\ & =e^{-a\tau }\left ( \frac{1}{2a}-\tau +\frac{1}{2a}\right ) \\ & =e^{-a\tau }\left ( \frac{1}{a}-\tau \right ) \end{align*}

case \(\tau <0\)

pict
Figure 3.6:Case 2 Part c

Break the integral into 3 parts, \(\left \{ -\infty ,\tau \right \} ,\left \{ \tau ,0\right \} ,\left \{ 0,\infty \right \} \)

\begin{align*} R\left ( \tau \right ) & =\int _{-\infty }^{\tau }g\left ( t\right ) g\left ( t-\tau \right ) dt+\int _{\tau }^{0}g\left ( t\right ) g\left ( t-\tau \right ) dt+\int _{0}^{\infty }g\left ( t\right ) g\left ( t-\tau \right ) dt\\ & =\int _{-\infty }^{\tau }-e^{at}\left ( -e^{a\left ( t-\tau \right ) }\right ) dt+\int _{\tau }^{0}-e^{at}e^{-a\left ( t-\tau \right ) }dt+\int _{0}^{\infty }e^{-at}e^{-a\left ( t-\tau \right ) }dt\\ & =e^{-a\tau }\int _{-\infty }^{\tau }e^{2at}dt-e^{a\tau }\int _{\tau }^{0}1dt+e^{a\tau }\int _{0}^{\infty }e^{-2at}dt\\ & =e^{-a\tau }\frac{\left [ e^{2at}\right ] _{-\infty }^{\tau }}{2a}+\tau e^{a\tau }+e^{a\tau }\frac{\left [ e^{-2at}\right ] _{0}^{\infty }}{-2a}\\ & =e^{-a\tau }\frac{\left [ e^{2a\tau }-0\right ] }{2a}+\tau e^{a\tau }+e^{a\tau }\frac{\left [ 0-1\right ] }{-2a}\\ & =\frac{e^{a\tau }}{2a}+\tau e^{a\tau }+\frac{e^{a\tau }}{2a}\\ & =e^{a\tau }\left ( \frac{1}{a}+\tau \right ) \end{align*}

At \(\tau =0\), we see that \(R\left ( 0\right ) =\frac{1}{a}\), hence the final answer is

\[ R\left ( \tau \right ) =\left \{ \begin{array} [c]{ccc}e^{-a\tau }\left ( \frac{1}{a}-\tau \right ) & & \tau >0\\ \frac{1}{a} & & \tau =0\\ e^{a\tau }\left ( \frac{1}{a}+\tau \right ) & & \tau <0 \end{array} \right . \]

Or we could write

\[ \fbox{$R\left ( \tau \right ) =e^{-\left \vert \tau \right \vert a}\left ( \frac{1}{a}-\left \vert \tau \right \vert \right ) $}\]

This is a plot of \(R\left ( \tau \right ) \), first plot is for \(a=1\) and the second for \(a=4\)

pict
Figure 3.7:Part c

3.2.3  Problem 2.32

problem: Determine the autocorrelation function of \(g\left ( t\right ) =A\operatorname{sinc}\left ( 2Wt\right ) \) and sketch it

solution:

\[ R\left ( \tau \right ) ={\displaystyle \int \limits _{-\infty }^{\infty }} g\left ( t\right ) g^{\ast }\left ( t-\tau \right ) dt \]

The above is difficult to do directly, hence we use the second method.

Since the function \(g\left ( t\right ) \) is an energy function, hence \(R\left ( \tau \right ) \) and the energy spectrum density \(\Psi _{g}\left ( f\right ) \) of \(g\left ( t\right ) \)make a Fourier transform pairs.

\[ R\left ( \tau \right ) \Leftrightarrow \Psi _{g}\left ( f\right ) \]

Therefore, to find \(R\left ( \tau \right ) \), we first find \(\Psi _{g}\left ( f\right ) \), then find the Inverse Fourier Transform of \(\Psi _{g}\left ( f\right ) \), i.e.

\begin{equation} R\left ( \tau \right ) =\digamma ^{-1}\left ( \Psi _{g}\left ( f\right ) \right ) \tag{1} \end{equation}

But \begin{equation} \Psi _{g}\left ( f\right ) =\left \vert G\left ( f\right ) \right \vert ^{2}\tag{2} \end{equation}

and we know that \[ A\operatorname{sinc}\left ( 2Wt\right ) \Leftrightarrow \frac{A}{2W}rect\left ( \frac{f}{2W}\right ) \]

Hence \[ G\left ( f\right ) =\frac{A}{2W}rect\left ( \frac{f}{2W}\right ) \]

The (2) becomes

\begin{align*} \Psi _{g}\left ( f\right ) & =\left \vert \frac{A}{2W}rect\left ( \frac{f}{2W}\right ) \right \vert ^{2}\\ & =\left ( \frac{A}{2W}\right ) ^{2}\left \vert rect\left ( \frac{f}{2W}\right ) \right \vert ^{2} \end{align*}

But \(\left \vert rect\left ( \frac{f}{2W}\right ) \right \vert ^{2}=rect\left ( \frac{f}{2W}\right ) \), since it has height of 1, so

\[ \fbox{$\Psi _{g}\left ( f\right ) =\left ( \frac{A}{2W}\right ) ^{2}rect\left ( \frac{f}{2W}\right ) $}\]

Hence from (1)

\begin{align*} R\left ( \tau \right ) & =\digamma ^{-1}\left ( \left ( \frac{A}{2W}\right ) ^{2}rect\left ( \frac{f}{2W}\right ) \right ) \\ & =\left ( \frac{A}{2W}\right ) ^{2}\digamma ^{-1}\left [ rect\left ( \frac{f}{2W}\right ) \right ] \end{align*}

Hence

\[ \fbox{$R\left ( \tau \right ) =\left ( \frac{A}{2W}\right ) ^{2}\operatorname{sinc}\left ( 2W\tau \right ) $}\]

This is a plot of the above function, for \(W=4\), and \(A=1\)

pict
Figure 3.8:Plot for \(W=4\), and \(A=1\)

3.2.4  Problem 2.33

The Fourier transform of a signal is defined by \(\left \vert \operatorname{sinc}\left ( f\right ) \right \vert \). Show that \(R\left ( \tau \right ) \) of the signal is triangular in form.

Answer:

Since \[ R\left ( \tau \right ) \Leftrightarrow \left \vert G\left ( f\right ) \right \vert ^{2}\]

Then

\begin{align*} R\left ( \tau \right ) & \Leftrightarrow \left \vert \operatorname{sinc}\left ( f\right ) \right \vert ^{2}\\ & \Leftrightarrow \operatorname{sinc}^{2}\left ( f\right ) \end{align*}

Hence to find \(R\left ( \tau \right ) \) we need to find the inverse Fourier transform of \(\operatorname{sinc}^{2}\left ( f\right ) \)

But \begin{align*} \digamma ^{-1}\left ( \operatorname{sinc}^{2}\left ( f\right ) \right ) & =\digamma ^{-1}\left ( \operatorname{sinc}\left ( f\right ) \times \operatorname{sinc}\left ( f\right ) \right ) \\ & =\digamma ^{-1}\left \{ \operatorname{sinc}\left ( f\right ) \right \} \otimes \digamma ^{-1}\left \{ \operatorname{sinc}\left ( f\right ) \right \} \end{align*}

But \(\digamma ^{-1}\left \{ \operatorname{sinc}\left ( f\right ) \right \} =rect\left ( t\right ) \), hence

\begin{align*} \digamma ^{-1}\left ( \operatorname{sinc}^{2}\left ( f\right ) \right ) & =rect\left ( t\right ) \otimes rect\left ( t\right ) \\ & ={\displaystyle \int \limits _{-\infty }^{\infty }} rect\left ( \tau \right ) rect\left ( t-\tau \right ) d\tau \end{align*}

This integral has the value of \(tri\left ( t\right ) \) (we also did this in class) Hence

\[ tri\left ( \tau \right ) \Leftrightarrow \operatorname{sinc}^{2}\left ( f\right ) \]

Hence \[ R\left ( \tau \right ) =tri\left ( \tau \right ) \]

Where \(tri\left ( \tau \right ) \) is the triangle function, defined as

\[ tri\left ( t\right ) =\left \{ \begin{array} [c]{ccc}1-\left \vert t\right \vert & & \left \vert t\right \vert <0\\ 0 & & otherwise \end{array} \right . \]

3.2.5  Problem 2.35

Consider the signal \(g\left ( t\right ) \) defined by \[ g\left ( t\right ) =A_{0}+A_{1}\cos \left ( 2\pi f_{1}t+\theta \right ) +A_{2}\cos \left ( 2\pi f_{2}t+\theta \right ) \]

(a) determine \(R\left ( \tau \right ) \)

(b) what is \(R\left ( 0\right ) \)

(c) has any information been lose in obtaining \(R\left ( \tau \right ) ?\)

Answer:

(a)

Take the Fourier transform of \(g\left ( t\right ) \) we obtain

\[ G\left ( f\right ) =A_{0}\delta \left ( f\right ) +\frac{A_{1}}{2}\left [ e^{j\theta }\delta \left ( f-f_{1}\right ) +e^{-j\theta }\delta \left ( f+f_{1}\right ) \right ] +\frac{A_{2}}{2}\left [ e^{j\theta }\delta \left ( f-f_{2}\right ) +e^{-j\theta }\delta \left ( f+f_{2}\right ) \right ] \]

Hence \(\left \vert G\left ( f\right ) \right \vert ^{2}=G\left ( f\right ) G^{\ast }\left ( f\right ) \), so we need to find \(G^{\ast }\left ( f\right ) \)

\[ G^{\ast }\left ( f\right ) =A_{0}\delta \left ( f\right ) +\frac{A_{1}}{2}\left [ e^{-j\theta }\delta \left ( f-f_{1}\right ) +e^{j\theta }\delta \left ( f+f_{1}\right ) \right ] +\frac{A_{2}}{2}\left [ e^{-j\theta }\delta \left ( f-f_{2}\right ) +e^{j\theta }\delta \left ( f+f_{2}\right ) \right ] \]

So \[ G\left ( f\right ) G^{\ast }\left ( f\right ) =A_{0}^{2}\delta \left ( f\right ) +\frac{A_{1}^{2}}{4}\left [ \delta \left ( f-f_{1}\right ) +\delta \left ( f+f_{1}\right ) \right ] +\frac{A_{2}^{2}}{4}\left [ \delta \left ( f-f_{2}\right ) +\delta \left ( f+f_{2}\right ) \right ] \]

So \[ S_{g}\left ( f\right ) =A_{0}^{2}\delta \left ( f\right ) +\frac{A_{1}^{2}}{4}\left [ \delta \left ( f-f_{1}\right ) +\delta \left ( f+f_{1}\right ) \right ] +\frac{A_{2}^{2}}{4}\left [ \delta \left ( f-f_{2}\right ) +\delta \left ( f+f_{2}\right ) \right ] \]

So \begin{align*} R\left ( \tau \right ) & =\digamma ^{-1}\left ( S_{g}\left ( f\right ) \right ) \\ & =\digamma ^{-1}\left ( A_{0}^{2}\delta \left ( f\right ) \right ) +\frac{A_{1}^{2}}{4}\digamma ^{-1}\left [ \delta \left ( f-f_{1}\right ) +\delta \left ( f+f_{1}\right ) \right ] +\frac{A_{2}^{2}}{4}\digamma ^{-1}\left [ \delta \left ( f-f_{2}\right ) +\delta \left ( f+f_{2}\right ) \right ] \end{align*}

Hence

\begin{equation} \fbox{$R\left ( \tau \right ) =A_{0}^{2}+\frac{A_{1}^{2}}{2}\cos 2\pi f_{1}\tau +\frac{A_{2}^{2}}{2}\cos 2\pi f_{2}\tau $}\tag{1} \end{equation}

Part (b)

\begin{align*} R\left ( 0\right ) & =A_{0}^{2}+\frac{A_{1}^{2}}{2}+\frac{A_{2}^{2}}{2}\\ & =\frac{1}{2}\left ( 2A_{0}^{2}+A_{1}^{2}+A_{2}^{2}\right ) \end{align*}

part(c)

In obtaining \(R\left ( \tau \right ) \) we have lost the phase information in the original signal as can be seen from (1) above

3.2.6  extra Problem

(a) find \(\xi \left ( t\right ) \otimes \xi \left ( t\right ) \) where \(\xi \left ( t\right ) \) is unit step function

(b)Find \(t\xi \left ( t\right ) \otimes e^{at}\xi \left ( t\right ) \) where \(a>0\)

(c)find \(u\left ( t\right ) \otimes h\left ( t\right ) \) where \(h\left ( t\right ) =e^{-3t}u\left ( t\right ) \) and \(u\left ( t\right ) \) is as shown

pict
Figure 3.9:Extra problem

To DO

3.2.7  Key solution

PDF