3.12 HW 11

  3.12.1 chapter 15, problem 2.11
  3.12.2 chapter 15, problem 2.17
  3.12.3 chapter 15, problem 2.18
  3.12.4 chapter 15, problem 2.2
  3.12.5 chapter 15, problem 2.21
  3.12.6 chapter 15, problem 2.22
  3.12.7 chapter 15, problem 2.23
  3.12.8 chapter 15, problem 2.3
  3.12.9 chapter 15, problem 2.4
  3.12.10 chapter 15, problem 2.5
  3.12.11 chapter 15, problem 2.9
  3.12.12 chapter 15, problem 3.11
  3.12.13 chapter 15, problem 3.24
  3.12.14 chapter 15, problem 3.25
  3.12.15 chapter 15, problem 3.29
  3.12.16 chapter 15, problem 3.30
  3.12.17 chapter 15, problem 3.4
  3.12.18 chapter 15, problem 3.6
  3.12.19 chapter 15, problem 3.8
PDF (letter size)
PDF (legal size)

3.12.1 chapter 15, problem 2.11

Problem Find the inverse transform of the function F(p)=3p+23p2+5p2

Solution

Need to simplify the above expression to some expressions which are shown in the table on page 636.

F(p)=3p+23p2+5p2(1)=2(3p1)(p+2)+3p(3p1)(p+2)

Expanding in partial fractions. For the first term in (1):

1(3p1)(p+2)=A(3p1)+B(p+2)=A(p+2)+B(3p1)(3p1)(p+2)A(p+2)+B(3p1)=1Ap+2A+3BpB=1

Hence 2AB=1 and (A+3B)=0 which gives A=12+B2. Therefore 12+B2+3B=0    or   1+B+6B2 =0 or 1+7B=0 or B=17. Hence A=12+172=12114= 7114= 614.

Now the first term in (1) can be written as 2(A(3p1)+B(p+2)) or 2( 614(3p1)+17(p+2)) or

(2) 67(3p1)27(p+2)

Doing partial fraction on the second term in (1) which is 3p(3p1)(p+2) gives

p(3p1)(p+2)=A(3p1)+B(p+2)=A(p+2)+B(3p1)(3p1)(p+2)A(p+2)+B(3p1)=pAp+2A+3BpB=p

Hence 2AB=0 and (A+3B)=1, therefore A=B2. Hence (B2+3B)=1 or B+6B2=1 or 7B=2 or B=27. Therefore A=B2=214. Hence 3p(3p1)(p+2)=3(A(3p1)+B(p+2))=3(214(3p1)+27(p+2)) or

(3)37(3p1)+67(p+2)

Combining (2) and (3) gives

F(p)= 67(3p1)27(p+2)+37(3p1)+67(p+2)=67 1(3p1)271(p+2)+271(3p1)+671(p+2)=471(p+2)+97 1(3p1)=471(p+2)+921 1(p13)

Now we can use the table to find the inverse transform. Use property L2, which says L(eat)=1p+a Hence , setting a=2, gives L(e2t)=1p+2 and setting a=13 gives L(e13t)13t=1p13. Hence f(t)=47e2t+921e13t and the inverse Laplace transform is  f(t)=47e2t+37e13t

3.12.2 chapter 15, problem 2.17

Problem Use L32 and L11 to obtain L(t2 sinat)

Solution

(L32)L(tnf(t))=(1)ndnF(p)dpn(L11)L(t sinat)= 2ap(p2+a2)2

we set f(t)=t sinat then we can write using L32

(1)L(t f(t))=(1)dL(f(t))dp

But L(f(t))=L(t sinat)  = 2ap(p2+a2)2 from table L11 (1) becomes

L(t f(t))=ddp(2ap(p2+a2)2)L(t×t sinat)= (p 2×2a(p2+a2)3×2p+2a(p2+a2)2×1)L(t2 sinat)= 8ap2(p2+a2)32a(p2+a2)2= 8ap22a(p2+a2)(p2+a2)3 =a(8p22p22a2)(p2+a2)3=a(6p22a2)(p2+a2)3

Or

L(t2 sinat)=6ap22a3(p2+a2)3

3.12.3 chapter 15, problem 2.18

Problem Use L31 to derive L21

Solution

(L31)L(f(t)t)= u=pF(u)du(L21)L( eatebtt)= lnp+bp+a

we set f(t)=eatebt then we can write using L31

L(f(t)t)=u=pF(u)du=u=pL[f(t)]  du

but L[f(t)]=L(eatebt)=L(eat)L(ebt)=1p+a1p+b  By using L2. But since we are using u in place of p in integral, we need to call p=u. Hence

L(f(t)t)=u=p(1u+a1u+b)  du=u=p1u+a duu=p1u+b  du=[ln(u+a)]p[ln(u+b)]p=[ln(+a)ln(p+a)][ln(+b)ln(p+b)]=ln()ln(p+a)ln()+ln(p+b)=ln(p+b)ln(p+a)

but lnAlnB=lnAB, therefore

L(f(t)t)= ln(p+b)ln(p+a)L(eatebtt)=ln(p+bp+a)

3.12.4 chapter 15, problem 2.2

Problem Use relation L2 to find L7 and L8 in laplace table.

Solution

(L2)L(eat)=1p+a

for (p+a)>0

(L7)Leatebtba=1(p+a)(p+b)

(L8)Laeatbebtab=p(p+a)(p+b)

For (p+a)>0 and (p+b)>0. Where Lf(t) is the laplace transform of f(t) defined as Lf(t)=F(p)=0eptf(t)dt.

From the linearity property of the L operator, expand the LHS of L7, we get

Leatebtba=1baL(eatebt)=1ba(L(eat)L(ebt))

Now applying L2 gives for (p+a)>0 and (p+b)>0

Leatebtba=1ba(1p+a1p+b)=1ba( p+b(p+a)(p+a)(p+b))=1ba( ba(p+a)(p+b))=1(p+a)(p+b)

For Which is L7 as required to show. Similarly for L8, expand the LHS of L8 we get for (p+a)>0 and (p+b)>0

Laeatbebtab=1abL(aeatbebt)=1ab(L(eat)L(ebt))=1ab(aL(eat)bL(ebt))=1ab(a1p+ab1p+b)=1ab(a(p+b)b(p+a)(p+a)(p+b))=1ab(ap+abbpba(p+a)(p+b))=1ab(apbp(p+a)(p+b))=1ab(p(ab)(p+a)(p+b))=p(p+a)(p+b)

Which is L8.

3.12.5 chapter 15, problem 2.21

Problem Use L29 and L11 to obtain L(teat sinbt)

Solution

(L29)L(eat f(t))= F(p+a)(L11)L(t sinat)=  2ap (p2+a2)2

Then from L11 we get

L(t sinbt)=  2bp (p2+b2)2

Now, let p=(p+a) then from L29, the above becomes

L(eat t sinbt)=  2b(p+a) ((p+a)2+b2)2

3.12.6 chapter 15, problem 2.22

Problem similar to problem 2.21, Use L29 and L12 to obtain L(teat cosbt)

Solution

(L29)L(eat f(t))= F(p+a)(L12)L(t cosat)=  p2a2 (p2+a2)2

then from L12 we get

L(t cosbt)=  p2b2 (p2+b2)2

Now, let p=(p+a) then from L29, the above becomes

L(eat t cosbt)=  (p+a)2b2 ((p+a)2+b2)2

3.12.7 chapter 15, problem 2.23

Problem use result obtained in problem 2.21 and 2.22 to find inverse transform for p2+2p1(p2+4p+5)2

Solution

Recall, from 2.21 we showed that L(teat sinbt)=2b(p+a) ((p+a)2+b2)2 and from 2.22 L(teat cosbt)=(p+a)2b2 ((p+a)2+b2)2 HenceL(teat cosbt)L(teat sinbt)=(p+a)2b2 ((p+a)2+b2)22b(p+a) ((p+a)2+b2)2=(p+a)2+b2 2b(p+a)((p+a)2+b2)2 

Now Let a=2 and let b=1 we get

L(te2t cost)L(te2t sint)=(p+2)2122(p+2) ((p+2)2+12)2L(te2t costte2t sint) = p2+4+4p12p4 ((p+2)2+12)2= p2+2p1  (p2+4p+5)2

Hence inverse transform of  p2+2p1  (p2+2p+5)2 is te2t costte2t sint or  te2t (costsint)

3.12.8 chapter 15, problem 2.3

Problem Using either relation L2 or L3 and L4, verify L9 and L10 in laplace table.

Solution

(L2)L(eat)=1p+a                      Re(p+a)>0

(L3)Lsinat=ap2+a2              Re(p)>|Ima| 

(L4)Lcosat=pp2+a2              Re(p)>|Ima| 

(L9)Lsinhat=ap2a2             Re(p)>| Re(a)|  

(L10)Lcoshat=pp2a2             Re(p)>| Re(a)|  

Where L(f(t)) is the laplace transform of f(t) defined as L(f(t))=Y(s)=0eptf(t)dt. To derive L9, use the relation that

isinh(x)=sin(ix)

Hence, using L3, we get

L(isinhat)=L(siniat )iL(sinhat)=iap2+(ia)2             Re(p)>|Ima|L(sinhat)= ap2a2                 Re(p)>| Re(a)|          

which is L9. To find L10, use the relation

cosh(x)=cos(ix)

And using L4, we get

L(cosh(at))=L(cos(iat) )L(coshat)=pp2+(ia)2             Re(p)>|Ima|L(sinhat)= pp2a2                Re(p)>| Re(a)|      

Which is L10.

3.12.9 chapter 15, problem 2.4

Problem by differentiating the appropriate formulas w.r.t. ’a’, verify L12

Solution

L12 is

(L12)L(t cost)=p2a2(p2+a2)2                      Re(p)>|Ima| 

Where L(f(t)) is the laplace transform of f(t) defined asL(f(t))=F(p)=0eptf(t)dt. To derive this, I start with L3, which says

L(sinat)=ap2+a2                      Re(p)>|Ima|

The above can be rewritten in the full definition of the transform to make it easier to see

0ept sinat  dt=ap2+a2

Taking derivative of both sides w.r.t. a gives

dda[0ept sinat  dt]=dda[ap2+a2]0dda[ept sinat]  dt=a(2a(p2+a2)2)+1p2+a2×10ept tcosat  dt=2a2(p2+a2)2+1p2+a2L(t cosat)=2a2+(p2+a2)(p2+a2)2  =p2a2(p2+a2)2 

Which is L12

3.12.10 chapter 15, problem 2.5

Problem by integrating the appropriate formulas w.r.t. ’a’, verify L19

Solution L19 is

(L19)L(sinatt)=arctanap                      Re(p)>|Ima| 

Where L(f(t)) is the laplace transform of f(t) defined as L(f(t))=F(p)=0eptf(t)dt. To derive this, we start with L4, which says

L(cosat)=pp2+a2                      Re(p)>|Ima|

The above can be rewritten in the full definition of the transform to make it easier to see

0ept cosat  dt=pp2+a2

Integrating both sides w.r.t. a gives

(t=0t=ept cosat  dt)da=pp2+a2dat=0t=(ept cosat da) dt=arctanap+Kt=0t=ept (cosat da) dt=arctanap+K 

Now, since cosat da=sinatt+k and choose zero for values of the K’s, the constants of integration gives

0ept ( sinatt) dt=arctanap

Hence

L(sinatt)=arctanap  

Which is L19

3.12.11 chapter 15, problem 2.9

Problem Find the inverse transform of the function F(p)=52pp2+p2

Solution

Need to simplify the above expression to some expressions which are shown in the table on page 636.

F(p)=52pp2+p2=5p2+p22pp2+p2(1)=5 (p1)(p+2)2p(p1)(p+2)

From table, L7, we see that L(eatebtba)=F(p)=1 (p+a)(p+b). Setting a=1,b=2 we get the first expression in (1), that is

(2)L(ete2t3)=1 (p1)(p+2)

also from table, we see that L8 is L(aeatbebtab)=F(p)=p (p+a)(p+b). Hence, letting a=1,b=2 we get the second expression in (1), that is

(3)L(e+t2e2t3)=p (p1)(p+2)

So combine (2) and (3) we get

5L(e+te2t2+1)2L(e+t2e2t12)=5 (p1)(p+2)2p(p1)(p+2)

which is (1). Hence

f(t)=5e+te2t32e+t2e2t3=5e+te2t3+2e+t2e2t3=5e+t5e2t2e+t4e2t3 =3et9e2t3=et3e2t

Hence the inverse transform of F(p) is et3e2t

3.12.12 chapter 15, problem 3.11

Problem Use laplace transform to solve y 4y=4e2t ,y0=0,y0=1

Solution

Let L(y(t))=Y(p), and taking the laplace transform of both sides, noting first that L(y)=p2Ypy0y0 then we get

L(y) 4L(y(t))=L(4e2t)(p2Ypy0y0) 4Y=4L(e2t)

L2 from table on page 636 : L(eat)=1p+a , hence L(e2t)=1p2, hence, after applying boundary conditions, we get

(p2Y 1) 4Y=41p2 Y(p24)1=41p2Y=41(p24)(p2)+1(p24)Y= 41(p2)(p+2)(p2)+1(p24)Y= 41 (p+2)(p2)2+1(p24)

Doing partial fractions, repeated roots, gives

1 (p+2)(p2)2=A(p+2) +B(p2) + C(p2)2 1=A(p2)2+B(p+2)(p2)+C(p+2)1=A(p24p+4)+B(p24)+C(p+2)1=p2(A+B)+p(4A+C)+4A4B+2C

Hence

 A+B=04A+C=04A4B+2C=1

hence A=B, then 4B4B+2C=1 or 8B+2C=1 or C=1+8B2, therefore 4B+1+8B2=0 then B=116, then A=116,C=1+8(116)2=1 (12)2=14. Hence

Y=41 (p+2)(p2)2+1(p24)=4(A(p+2) +B(p2) + C(p2)2 ) +1(p24)=4(116(p+2) +116(p2) + 14(p2)2 ) +1(p24)=14 1(p+2) 141(p2)  +1(p2)2+1(p24)=14 1(p+2) 141(p2)  +1(p2)2+ (14 1(p2) 141(p+2) )= 1(p2)2

1(p2)2 using L6, we have L( tkeat)=k!(p+a)k+1, here a=2,k=1 and 1(p2)2te2t. Hence ,

f(t)=te2t

3.12.13 chapter 15, problem 3.24

Problem Use laplace transform to solve y 2y+y=2cost ,y0=5,y0=2

Solution

Let L(y(t))=Y(p), Take the laplace transform of both sides, noting first that L(y)=p2Ypy0y0 , L(y)=pYy0then we get

L(y) 2L(y)+L(y(t))=L(2cost)(p2Ypy0y0) 2(pYy0)+Y=2pp2+1

(p2Y5p+2) 2(pY5)+Y=2pp2+1Y(p22p+1)+125p=2pp2+1Y(p22p+1)=2pp2+112+5pY=2pp2+112+5p(p22p+1)Y=  2p(p2+1)(p22p+1)+5p12(p22p+1)Y= 2p(p2+1)(p1)2+5p12(p1)2

Doing partial fractions 2p(p1)2(p2+1)=A(p1)+B(p1)2 + Cp+D(p2+1) . Solving, we get A=0,B=1,C=0,D=1 Hence

Y= 1(p1)2   1(p2+1) +5p12(p1)2= 1(p1)2   1(p2+1) +5p (p1)212 1 (p1)2=11(p1)2   1(p2+1) +5p (p1)2

Hence , using table, we get inverse laplace transform 1(p1)2 tet and   1(p2+1) sint and p (p1)2et+tet, hence

f(t)=11tetsint+5(et+tet)=11tetsint+5et+5tet=5et6tetsint

3.12.14 chapter 15, problem 3.25

Problem Use laplace transform to solve y +4y+5y=2e2tcost, ,y0=0,y0=3

Solution

Let L(y(t))=Y(p), Taking the laplace transform of both sides, noting first that L(y(t))=p2Ypy0y0 , L(y(t))=pYy0then we get

L(y(t))+4L(y(t))+5L(y(t))=L(2e2tcost)(p2Ypy0y0) +4(pYy0)+5Y=2L(e2tcost)

Applying initial conditions

(p2Y 3) +4(pY)+5Y=2L(e2tcost)

From table using L14 L(e2tcost)=p+2(p+2)2+1. Hence

(p2Y 3) +4(pY)+5Y=2p+2(p+2)2+1Y(p2+4p+5)3=2p+2(p+2)2+1Y=2p+2(p+2)2+1+3(p2+4p+5)Y=2p+2((p+2)2+1)(p2+4p+5)+31(p2+4p+5)

but (p2+4p+5)=(p+2)2+1, therefore

Y=2p+2((p+2)2+1)2 +3(p+2)2+1=2p+2((p+2)2+1)((p+2)2+1)+3(p+2)2+1

But inverse transform of p+2((p+2)2+1)2 =12te2tsint and inverse transform of 1(p+2)2+1=e2tsint. Hence

f(t)=2(12te2tsint)+3(e2tsint)=te2tsint+3e2tsint=(t+3)e2t sint

3.12.15 chapter 15, problem 3.29

Problem Use laplace transform to solve y +z2y=1, y0=z0=1,zy=t 

Solution

Taking laplace transform of both equations, then we get 2 equations in Y and Z, then solve for them. Let L(y(t))=Y(p), L(z(t))=Z(p)

L(y(t)) +L(z(t))2L(y(t))=L(1)L(z(t)) L(y(t))=L(t)

Then we get

(pYy0 )+(pZz0 )2Y=1p Z (pYy0 ) = 1p2

Putting initial conditions gives

(pY1 )+(pZ1 )2Y=1p Z (pY1 ) = 1p2

(1) Y(p2)+ pZ2   =1p(2) Z pY+1  = 1p2

Solving for Y,From (1), Z=1p+2Y(p2)p , and substituting into (2) gives

 1p+2Y(p2)ppY+1 = 1p21p+2Y(p2)p2Y+p=1p  2Y(p2)p2Y =p Y(p+2p2) = p2Y =  p2(p+2p2)Y =   p+2(p+1)(p+2)Y= 1(p+1)

Hence Y=1p1 so from L2

y(t)=et

Now, that we have Y, we solve for Z. From (2)

 Z pY+1  = 1p2Zp(1p1)+1=1p2Z=1p21+pp1Z= p1p2(p1)+p3p2(p1)Z=p1 +p2 p2(p1)Z=p1 +p2 p2(p1)

Doing partial fraction on the above, we get Z= 1p2+1p1, Hence

z(t)=t+et

3.12.16 chapter 15, problem 3.30

Problem Use laplace transform to solve y +2z=1, y0=0, 2yz=2t,z0=1 

Solution

Take laplace transform of both equations, then we get 2 equations in Y and Z, then solve for them.

Let L(y(t))=Y(p), L(z(t))=Z(p)

L(y(t))+2Z=L(1)  2Y L(z(t))=L(2t)

pYy0 +2Z=L(1)  2Y (pZz0) =L(2t)

Then we get, by putting z0=1,y0=0

(1)pY  +2Z=1p(2) 2Y (pZ1 ) =2p2

Obtain Z from first equation and sub into the second to solve for Y, Z=1ppY2, Hence

 2Y (p(1ppY2)1 ) =2p22Yp2(1ppY)+1= 2p22Y p2(1p2Yp)=  2p212Y 12(1p2Y)= 2p2p22Y 12 +12p2Y=2p2p2Y(2+p22)=2p2p2+12Y= 4p22p2( 4+p22)Y= 4p2 p2( 4+p2)

Hence , using partial fraction gives

Y= 4+p2 p2( 4+p2)=Ap+Bp2+Cp+D( 4+p2)

Then

 (Ap+B)( 4+p2)+(Cp+D)p2=4p24Ap+Ap3+4B+Bp2+Cp3+Dp2=4p2p3(A+C)+p2(B+D)+p(4A)+4B=4p2

Hence, 4B=4B=1  and 4A=0A=0  and B+D=1 and A+C=0C=0 , therefore D=1BD=2 . Hence

Y=Ap+Bp2+Cp+D( 4+p2)=1p22( 4+p2)

Using tables for inverse transform gives

y(t)=tsin2t

Now, to find z(t), subtituting value we found for Y into equation (1) above.

pY  +2Z=1pp(1p22( 4+p2))  +2Z=1p1p2p( 4+p2)  +2Z=1p  Z=p( 4+p2)Z=p( 4+p2)

From tables, using L4

z(t)=cos2t

3.12.17 chapter 15, problem 3.4

Problem Use laplace transform to solve y+y=sint ,y0=1,y0=0

Solution

Let L(y(t))=Y(p), Take the laplace transform of both sides, noting first that L(y(t))=p2Ypy0y0 then we get

L(y(t))+L(y(t))=L(sint)(p2Ypy0y0)+Y =1p2+1

Where I used L3 from table on page 636 which says that L(sinat)=ap2+a2. Now solving for Y, noting that y0=1 and y0=0 gives

(p2Yp)+Y =1p2+1Y(p2+1) p=1p2+1Y(p2+1)  =1p2+1+p (1)Y = 1(p2+1)2+ p(p2+1)

From table using L12, p(p2+1)cost and using L17, 1(p2+1)212(sinttcost). Hence, putting these together into (1) gives

f(t)=cost+12(sinttcost)

This is the particular solution to the ODE.

3.12.18 chapter 15, problem 3.6

Problem Use laplace transform to solve y6y+9y=te3t ,y0=0,y0=5

Solution

Let L(y(t))=Y(p), Take the laplace transform of both sides, noting first that L(y(t))=p2Ypy0y0 and L(y(t))=pYy0 then we get

L(y(t))6L(y(t))+9L(y(t))=L(t e3t)(p2Ypy0y0)6(pYy0)+9Y=L(t e3t)

I use L6 from table on page 636 which says that L(tk eat)=k!(p+a)k+1, hence for k=1,a=3, we get L(tk eat)=1(p3)2

(p2Ypy0y0)6(pYy0)+9Y=1(p3)2

Applying boundary conditions gives

(p2Y5)6(pY)+9Y=1(p3)2Y(p26p+9)5=1(p3)2Y(p26p+9) =1(p3)2+5Y=1(p26p+9)(p3)2+5(p26p+9)Y=1 (p3)2(p3)2+5(p3)2(1)Y=1 (p3)4 +5(p3)2

Now using table, from L6, 1(p3)2, let a=3,k=1 hence 1(p3)2te3t And using L6 again, 1 (p3)4 , let k=3,a=3 then 6 (p3)4 t3e3t, therefore (1) becomes

f(t)=16t3e3t+5 te3t=e3t(16t3+5t)

3.12.19 chapter 15, problem 3.8

Problem Use laplace transform to solve y +16y=8cos4t ,y0=0,y0=0

Solution

Let L(y(t))=Y(p), Taking the laplace transform of both sides, noting first that L(y(t))=p2Ypy0y0 results in

L(y(t)) +16L(y(t))=L(8cos4t)(p2Ypy0y0) +16Y=8L(cos4t)Y(p2+16)=8pp2+16

I used L6 from table on page 636 : L(cosat)=pp2+a2 

Y=8p(p2+16)2

Now looking at L11, which says L(t sinat)=2ap(p2+a2)2, hence letting a=4  gives the solution

 f(t)=t sin4t