3.13 HW 12

  3.13.1 chapter 15, problem 4.12
  3.13.2 chapter 15, problem 4.18
  3.13.3 chapter 15, problem 4.20
  3.13.4 chapter 15, problem 4.21
  3.13.5 chapter 15, problem 4.23
  3.13.6 chapter 15, problem 4.25
  3.13.7 chapter 15, problem 4.3
  3.13.8 chapter 15, problem 4.5
  3.13.9 chapter 15, problem 4.7
  3.13.10 chapter 15, problem 5.1
  3.13.11 chapter 15, problem 5.10
  3.13.12 chapter 15, problem 5.2
  3.13.13 chapter 15, problem 5.22
  3.13.14 chapter 15, problem 5.4
  3.13.15 chapter 15, problem 6.2
  3.13.16 chapter 15, problem 6.4
  3.13.17 chapter 15, problem 6.5
  3.13.18 chapter 15, problem 6.9
  3.13.19 chapter 15, problem 7.11
  3.13.20 chapter 15, problem 7.7
  3.13.21 chapter 15, problem 7.9
PDF (letter size)
PDF (legal size)

3.13.1 chapter 15, problem 4.12

Problem Find the exponential Fourier transform of the given f(x) and write f(x) as a fourier integral.

 f(x)={sinx|x|<π2  0,|x|>π2

Solution

Let ϝ(α) be the Fourier transform of f(x) defined as ϝ(α)=12πf(x) eiαx dx

ϝ(α)=12π f(x) eiαx dx2π ϝ(α)= π2π2sinx  eiαx dx   

Integration by parts, u=sinx,du=cosx,v=eiαxiα, hence u dv = uvdu v

I= π2π2sinx  eiαx dx  =[sinx eiαxiα]π2π2π2π2cosx  eiαxiα dx=[sinx eiαxiα]π2π2+1iαπ2π2cosx  eiαx dx

Integration by parts the second integral again. u=cosx,du=sinx

I=[sinx eiαxiα]π2π2+1iα{[cosx eiαxiα]π2π2π2π2(sinx)  eiαxiα dx}I=[sinx eiαxiα]π2π2+1iα{[cosx eiαxiα]π2π2(1iα)π2π2sinx  eiαx dx}I=[sinx eiαxiα]π2π2+1iα[cosx eiαxiα]π2π21i2α2π2π2sinx  eiαx dxI=[sinx eiαxiα]π2π2+1iα[cosx eiαxiα]π2π2+1α2π2π2sinx  eiαx dx

But the last integral on the right above is the same as the integral we start with, so

I=[sinx eiαxiα]π2π2+1iα[cosx eiαxiα]π2π2+1α2II1α2I=[sinx eiαxiα]π2π2iα[cosx eiαxiα]π2π2I(11α2)=[sin(π2) eiαπ2iαsin(π2) eiα(π2)iα]iα[cos(π2) eiαπ2iαcos(π2) eiα(π2)iα]I(α21α2)=[ eiαπ2iα+ eiα(π2)iα] iα(0)I=(α2α21)[ eiαπ2iα eiαπ2iα]I=(αα21)1i[ eiαπ2+eiαπ2]I=(αiα21) [ eiαπ2+eiαπ2]I=(αiα21)2cos(απ2)

Hence the Fourier transform of f(x) is

2π ϝ(α)= π2π2sinx  eiαx dx=(αiα21)2cos(απ2)

Therefore

g(α)=1π(αiα21)cos(απ2)= α i cos(απ2)(α21)π

To obtain f(x) given its fourier transform ϝ(α), then we apply the inverse fourier transform

f(x)= ϝ(α) eiαx dα=  α i cos(απ2)(α21)π  eiαx dα=1π α i cos(απ2)α21  eiαx dα

3.13.2 chapter 15, problem 4.18

Problem Find the fourier sin transform of the given f(x) and write f(x) as a fourier integral. Verify the answer is the same as the exponential fourier transform.

 f(x)={x|x|<1  0,|x|>1

Solution

Let Fsf(x) be the Fourier sin transform of f(x) defined as gs(α)=Fsf(x)=2π0f(x) sin(αx) dx. Hence, for the function above we get

gs(α)= 2π01x sin(αx) dx

Notice, we integrate from zero, not from -1, since the sin transform is defined only for positive x. Integrating by parts, u=x,v=cos(αx)α, hence u dv = uvdu v

gs(α)= 2π{[x(cos(αx)α)]01 01 cos(αx)α dx}=2π{1α[x cos(αx)]01+1α 01 cos(αx) dx}=2π{1α[x cos(αx)]01+1α [sin(αx)α]01}=2π1α{[ cos(α)0]+ 1α [sin(αx)]01}=2π1α{cos(α) + 1α [sin(α)0] }=2π1α(cos(α)+ 1α sin(α))=2π1α(1α sin(α)cos(α)  )

Hence the Sin Fourier transform of f(x) is

gs(α)=2π1α(1α sin(α)cos(α)  )

To obtain f(x) given its sin fourier transform gs(α), then we apply the inverse sin fourier transform

fs(x)=2π 0gs(α) sinαx dα= 2π 02π1α(1α sinαcosα ) sinαx dα=2π 0 (1α2 sinα1αcosα) sinαx dα(A0)=2π 0 (sinααcosαα2) sinαx  dα

Now we need to show that the above is the same as the inverse fourier transform found for problem 6. From back of the book, the IFT for problem 6 is given as

f(x)=sinααcosαiπα2eiαxdα

Need to convert the above to fs(x). Since eiαx=cosαx+isinαx

f(x)=sinααcosαiπα2(cosαx+isinαx)dα=(sinααcosα)cosαxiπα2+(sinααcosα)isinαxiπα2dα(1)=(sinααcosα)cosαxiπα2dα+(sinααcosα)isinαxiπα2dα

Looking at the first integral,

(sinαoddαoddcosαeven)cosαxeveniπα2even  dα=(oddodd×even)×eveneven  dα=(oddodd )×eveneven  dα=odd ×eveneven  dα=oddeven  dα=odd  dα

Hence the integral vanishes. Hence (1) becomes

(2)f(x)=(sinααcosα)isinαxiπα2dα

Looking at the above

(sinαoddαoddcosαeven)isinαxoddiπα2even=(oddodd×even)×oddeven=odd  ×oddeven=eveneven=even

Since the integrand is even, then =20 Hence (2) becomes

(3)f(x)=20(sinααcosα)isinαxiπα2  dα=2π0(sinααcosα)α2sinαx  dα

comparing this to equation (A1) above, we see that

fs(x)=f(x)

Which is what we are asked to show.

3.13.3 chapter 15, problem 4.20

Problem Find the fourier sin transform of the given f(x) and write f(x) as a fourier integral. Verify the answer is the same as the exponential fourier transform.

 f(x)={sinx|x|<π2  0,|x|>π2

Solution

Let Fsf(x) be the Fourier sin transform of f(x) defined as gs(α)=Fsf(x)=2π0f(x) sin(αx) dx. Hence, for the function above we get

gs(α)= 2π01sinx sin(αx) dx

Notice, we integrate from zero, not from -1, since the sin transform is defined only for positive x. Since sinβsinγ=12cos(βγ)12cos(β+γ) Then sinx sin(αx)=12cos(xαx)12cos(x+αx). Hence

gs(α)= 2π0112cos(xαx)12cos(x+αx) dx=122π{[sin(xαx)1α]01[sin(x+αx)1+α]01}=122π{[sin(1α)1α0][sin(1+α)1+α0]01}=122π(sin(1α)1αsin(1+α)1+α)

Hence the Sin Fourier transform of f(x) is

gs(α)=122π(sin(1α)1αsin(1+α)1+α)

Therefore, to obtain f(x) given its sin fourier transform gs(α), we apply the inverse sin fourier transform

fs(x)=2π 0gs(α) sinαx dα= 2π 0122π(sin(1α)1αsin(1+α)1+α) sinαx dα(1)=1π 0 (sin(1α)1αsin(1+α)1+α) sinαx dα

Now we need to show that the above is the same as the exponential inverse fourier transform found for problem 12. The exponential IFT for problem 12 is

(2)f(x)=1π α i cos(απ2)α21  eiαx dα

So Need to show that (1) and (2) are the same. Need to convert the above (1) to fs(x) in (2).Since eiαx=cosαx+isinαx, (2) can be written as

f(x)=1πα i cos(απ2)α21 (cosαx+isinαx)dα(3)=1π[α i cos(απ2)α21cosαx  dα+α i cos(απ2)α21 isinαx  dα]

Looking at the first integral,

αodd i cos(απ2)evenα2even1cosαxeven  dα=(odd× even)×eveneven  dα=odd ×eveneven  dα=oddeven  dα=odd  dα

Hence the integral vanishes. So (3) becomes

f(x)=0+1πα i cos(απ2)α21 isinαx  dα=1πα i cos(απ2)α21 isinαx  dα

Looking at the above integrand,

αodd i cos(απ2)evenα2even1 isinαxodd=(odd ×even)×oddeven=odd  ×oddeven=eveneven=even

Since the integrand is even, then =20. Hence (2) becomes

f(x)=2π0α i cos(απ2)α21 isinαx  dα=2π0α  cos(απ2)α21 sinαx  dα=2π0α  cos(απ2)1α2 sinαx  dα

But 1α2=(1+α)(1α), therefore

f(x)=2π0α  cos(απ2)(1+α)(1α) sinαx  dα

But cos(απ2)sinαx=12(sin(απ2αx)+sin(απ2+αx)), hence the above becomes

f(x)=2π0α  12(sin(απ2αx)+sin(απ2+αx))(1+α)(1α)   dαf(x)=1π0α  (sin(απ2αx)+sin(απ2+αx))(1+α)(1α)   dαf(x)=1π0αsin(απ2+αx)(1+α)(1α)  αsin(απ2αx)(1+α)(1α)   dα

3.13.4 chapter 15, problem 4.21

Problem Find the fourier transform of the given f(x) =ex22σ2

Solution

Let ϝ(α) be the Fourier sin transform of f(x) defined as
ϝ(α)=12πf(x) eiαx dx

So, for the function above we get

ϝ(α)= 12πex22σ2 eiαx dx= 12πex22σ2iαx dx= 12πe x2iαx(2σ2)2σ2 dx(1)= 12πe x22iασ2x 2σ2 dx

looking at the exponent x22iασ2x 2σ2. completing the square in x gives

x2+2iασ2x =(x+Z )2Y

Solving for Z,Y gives

x2+2iασ2x =x2+2xZ+Z2Y 

Therefore Z=iασ2,Z2Y=0, and Y=α2σ4. Hence Exponent can be written as

x2+2iασ2x 2σ2=(x+iασ2 )2(α2σ4)2σ2=(x+iασ2 )2+α2σ42σ2=(x+iασ2 )22σ2α2σ42σ2=(x+iασ2 )22σ2α2σ22

The integral (1) becomes

ϝ(α)=12πe (x+iασ2 )22σ2α2σ22 dx=12πe (x+iασ2 )22σ2 eα2σ22 dx

Moving eα2σ22 outside the integral because it does not depend on x gives

ϝ(α)=eα2σ222πe (x+iασ2 )22σ2  dx

Let y=x+iασ2, dy=dx and the limits do not change. Hence we get

ϝ(α)=eα2σ222πe y 22σ2  dy

Since the exponential function is raised to a square power, then we can write e y2=20e y2  (since even function). Hence above integral becomes

ϝ(α)=eα2σ22π0e y 22σ2  dy

Let ζ=y2σ , then y=2σζ, and y2=2σ2ζ2. Hence dζ=12σdy and the above integral becomes

ϝ(α)=eα2σ22π0e ζ2  2σ dζ(2)ϝ(α)=2σeα2σ22π0e ζ2  dζ

Now from equation 9.5 on page 468

2π0e ζ2  dζ=10e ζ2  dζ=π2

Hence (2) becomes

ϝ(α)=2σeα2σ22π(π2)ϝ(α)= σ2π eα2σ22

Which is what we are asked to show.

3.13.5 chapter 15, problem 4.23

Problem Show that

01cosπααsinα dα=π2 and 01cosπααsinπα dα=π4

Solution

From problem 17, the Fourier sin transform for f(x) shown in problem 3 is

gs(α)=2(1cosπα)πα

From equation 4.14 page 651, f(x) can be obtained from inverse sin transform is

fs(x)=2π0gs(α)sinαx dα=2π0(2(1cosπα)πα)sinαx dα(1)=2π0(1cosπα)αsinαx dα

Now, from the definition of f(x), which is

 f(x)={1π<x<0 1 0<x<π0,|x|>π

We see that for x=1, f(x)=1, hence substitute in (1) we get

1=2π0(1cosπα)αsinα dαπ2=0(1cosπα)αsinα dα

Which is the first result we required to show. For the second result, let x=π hence f(π)= average value of f(x) at x=π.  Which is given by f(π)+f(π+)2=1+02=12. Hence substitute in (1) we get

fs(x=π)=12=2π0(1cosπα)αsinαπ dαπ4=0(1cosπα)αsinαπ dα

Which is the second result we are asked to show.

3.13.6 chapter 15, problem 4.25

Problem Show that

(a) represent as an exponential fourier transform the function

 f(x)={sinx0<x<π    0,otherwise

(b) Show that the result can be written as

f(x)=1π0cosαx+cosα(xπ)1α2dα

Solution

The exponential Fourier transform is defined as

g(α)=12πf(x)eiαx dx

Applying the function f(x) gives

g(α)=12π0πsinx eiαx dx

But

sinx=eixeix2i

Hence the transform can be written as

g(α)=12π0πeixeix2i eiαx dx=14iπ0πeixiαxeixiαx  dx=14iπ0πex(iiα)ex(iiα)  dx=14iπ([ ex(iiα)iiα]0π [ ex(iiα)iiα]0π)=14iπ([ eπ(iiα)iiα1iiα] [ eπ(iiα)iiα 1iiα])=14iπ(1iiα[ eπ(iiα)1] 1iiα[ eπ(iiα) 1])=14iπ(1iiα[ eπ(iiα)1] +1i+iα[ eπ(iiα) 1]) =1i14iπ(11α[ eπ(iiα)1] +11+α[ eπ(iiα) 1]) = 14π(eπ(iiα)1α11α +eπ(iiα)1+α 11+α)= 14π((1+α)eπ(iiα)+(1α)eπ(iiα)(1α)(1+α) (1+α)+(1α)(1α)(1+α) )= 14π((1+α)eπ(iiα)+(1α)eπ(iiα)(1α2) 2(1α2) )= 1(1α2)4π(eπ(iiα)+αeπ(iiα)+eπ(iiα)αeπ(iiα)  2)= 1(1α2)4π(eπi eiπα+αeπi eiπα+eπi eiπααeπi eiπα  2)

But eπi =1 and eπi =1

g(α)= 1(1α2)4π(eiπααeiπαeiπα+αeiπα  2)g(α)= 1(1α2)4π(eiπα eiπα2)g(α)= 1(1α2)4π(eiπα +eiπα+2)g(α)= 2eiπα +2(1α2)4π

Hence the exponential fourier transform is

g(α)= eiπα +1(1α2)2π

Therefore f(x) can be rewritten as

f(x)= g(α) eiαx dα= eiπα +1(1α2)2π eiαx dα(1)= 12π1+eiπα (1α2) eiαx dα

Which is the answer required to show.

Part(b)

Now need to show that the above can be written as f(x)=1π0cosαx+cosα(xπ)1α2dα

From (1)

f(x)=12π1+eiπα (1α2) eiαx dα=12πeiαx+eiαxeiπα (1α2) dα=12πeiαx+eiαxiπα (1α2) dα=12πeiαx+eiα(xπ) (1α2) dα=12π2(cosαx+cosα(xπ)) (1α2) dα=1πcosαx+cosα(xπ) (1α2) dα

Which is what is required to show.

3.13.7 chapter 15, problem 4.3

Problem Find the exponential fourier transform of the given f(x) and write f(x) as a fourier integral. f(x)={1,π<x<01,0<x<π0,|x|>π Solution

Let ϝ(α) be the Fourier transform of f(x) defined as ϝ(α)=12πf(x) eiαx dx, hence ϝ(α)=12π f(x) eiαx dx2π ϝ(α)= π0 eiαx dx+0π eiαx dx= [ eiαxiα]π0 +[ eiαxiα]0π= 1iα[ eiαx]π01iα[ eiαx]0π=1iα[ e0eiαπ]1iα[ eiαπe0]0π=1iα[ 1eiαπ]1iα[ eiαπ1]0π=1iαeiαπiαeiαπiα +1iα=2iα1iα(eiαπ+eiαπ)

But eiαπ+eiαπ=2cosαπ. Hence2π ϝ(α)=2iα1iα(2cosαπ)= 2iα(1cosαπ)

Hence the Fourier transform of f(x) isϝ(α)=12π[ 2iα(1cosαπ)]= 1παi (1cosαπ)

To obtain f(x) given its fourier transform ϝ(α), then we apply the inverse fourier transformf(x)= ϝ(α) eiαx dα= 1παi (1cosαπ) eiαx dα=1πi 1α(1 cosαπ) eiαx dα

3.13.8 chapter 15, problem 4.5

Problem Find the exponential fourier transform of the given f(x) and write f(x) as a fourier integral. f(x)={1,0<x<1  0,otherwise Solution

Let ϝ(s) be the Fourier transform of f(x) defined as ϝ(s)=12πf(x) eiαx dxϝ(s)=12π f(x) eisx dx2π ϝ(s)= 01eisx dx =  [ eisxis]01  = 1is[ eisx]01 =1is[ eise0] =1is[ eis1] 

Hence the Fourier transform of f(x) isϝ(s)=12π[ 1is[ eis1]]= i2πs (eis1)

To obtain f(x) given its fourier transform ϝ(s), then we apply the inverse fourier transformf(x)= ϝ(s) eisx ds=  i2πs (eis1) eisx ds=i2π 1s(eis1) eisx ds

3.13.9 chapter 15, problem 4.7

Problem Find the exponential fourier transform of the given f(x) and write f(x) as a fourier integral.

 f(x)={|x||x|<1  0,|x|>1

Solution

Let ϝ(α) be the Fourier transform of f(x) defined as ϝ(α)=12πf(x) eiαx dx

 ϝ(α)=12π f(x) eiαx dx2π ϝ(α)= 10x  eiαx dx +01x  eiαx dx 

Integrating by parts, u=x,v=eiαxiα, hence u dv = uvdu v. The first integral is

10x  eiαx dx= [(x) eiαxiα]10+10  eiαxiα dx= [(x) eiαxiα]10+10  eiαxiα dx=1iα  [0(1)×eiα]1iα10 eiαx dx =1iα  [eiα]1iα[ eiαx iα]10=1iα  [eiα]+1i2α2[ eiαx ]10=1iα  [eiα]1α2[ 1 eiα]=eiαiα 1α2+ eiαα2

And the second integral

01x  eiαx dx= [x eiαxiα]0101  eiαxiα dx=1iα  [1×eiα0]+1iα01 eiαx dx =1iα  [eiα]+1iα[ eiαx iα]01=1iα  [eiα]1i2α2[ eiαx ]01=1iα  [eiα]+1α2[ eiα1 ]=eiαiα  + eiαα21α2 

Hence

2π  ϝ(α)=(eiαiα 1α2+ eiαα2)+(eiαiα  + eiαα21α2) 2π  ϝ(α)=eiαiα 1α2+ eiαα2eiαiα  + eiαα21α2=eiαiα + eiαα2eiαiα  + eiαα2  2α2=1α(eiαieiαi)+1α2(eiα+eiα )2α2=1α(eiαeiαi)+1α2(eiα+eiα )2α2

But eiα+eiα=2cosα and eiαeiαi=2sinα, Hence the above becomes

2π  ϝ(α)=1α(2sinα)+1α2(2cosα )2α2=2α2[αsinα+cosα 1] ϝ(α)=1πα2[αsinα+cosα 1]

Hence the Fourier transform of f(x) is

ϝ(α)=1πα2[αsinα+cosα 1]

To obtain f(x) given its fourier transform ϝ(α), then we apply the inverse fourier transform

f(x)= ϝ(α) eiαx dα=  1πα2[αsinα+cosα 1]  eiαx dα=1π 1α2[αsinα+cosα 1]  eiαx dα

3.13.10 chapter 15, problem 5.1

Problem Show that  g(t)h(t)= h(t)g(t) 

Solution

By definition,

(1)g(t)h(t)=0tg(tτ) h(τ) dτ

Let u=tτ, du=dτ, when τ=0, u=t, when τ=t, u=0, Hence The RHS becomes

0tg(tτ) h(τ) dτ=u=tu=0g(u) h(tu) (du)=u=tu=0g(u) h(tu) du=u=0u=tg(u) h(tu) du

Since u is a dummy variable of integration, call it anything we want, say τ so above integral becomes

0tg(tτ) h(τ) dτ=0tg(τ) h(tτ) dτ(2)0tg(tτ) h(τ) dτ=0th(tτ) g(τ)  dτ

Hence from (2) g(t)h(t)= h(t)g(t) 

3.13.11 chapter 15, problem 5.10

Problem

Use convolution integral to find the inverse transform of 1p(p2+a2)2

Solution

1p(p2+a2)2=1p1(p2+a2)2=GH

From Tables using L1 and L17 g(t)=1 and h(t)=sinatat cosat2a3. Hence the inverse transform of GH=  g(t)h(t). Using L34

(L34) g(t)h(t)=0tg(tτ) h(τ) dτ

Hence

 g(t)h(t)=0t1×sina(tτ)a(tτ) cosa(tτ)2a3   dτ=12a30tsina(tτ)a(tτ) cosa(tτ) dτ(1)=12a3[0tsina(tτ) dτat0t cosa(tτ)dτ+a0tτcosa(tτ) dτ]

The last integral can be integrated by parts. u=τ, v=sina(tτ)a

0tτcosa(tτ) dτ= [τsina(tτ)a]0t0tsina(tτ)a dτ=1a[τsina(tτ)]0t+1a0tsina(tτ) dτ =1a[τsina(tτ)]0t+1a[ cosa(tτ)a]0t  =1a[τsina(tτ)]0t+1a2[ cosa(tτ)]0t=1a[tsina(tt)0]+1a2[ cosa(tt)cosa(t0)] =1a[0]+1a2[ cosa(0)cosa(t)] =  1a2[ 1cosat]

Hence (1) becomes

g(t)h(t)=12a3[0tsina(tτ) dτat0t cosa(tτ)dτ+a1a2[ 1cosat]]g(t)h(t)=12a3[[cosa(tτ)aτ]0tat [ sina(tτ)aτ]+ 1a[ 1cosat]]=12a3[1a[cosa(tτ)]0t+t [ sina(tτ)]0t+ 1a[ 1cosat]]=12a3[1a[cosa(tt)cosa(t0)]+t [ sina(tt)sina(t0)]0t+ 1a[ 1cosat]]=12a3[1a[1cosat]+t [ sinat]+ 1a[ 1cosat]]=12a3[1a[1cosat]t  sinat+ 1a[ 1cosat]]=12a4(22cosatat  sinat)

So the inverse Laplace transform of 1p(p2+a2)2 is 12a4(22cosatat  sinat)

3.13.12 chapter 15, problem 5.2

Problem Use L34 and L2 to find the inverse transform of G(p)H(p) when G(p)=1(p+a) and H(p)=1(p+b) your result should be L7

Solution

(L2)L(eat)=1p+a

(L34)g(t)h(t)=0tg(tτ) h(τ) dτ

Using L2, g(t)=L11(p+a)=eat, and h(t)=L11(p+b)=ebt. Now Let Y(p)=G(p)H(p), But

G(p)H(p)=L{ g(t)h(t) }

Then

y(t)=g(t)h(t)=0tg(tτ) h(τ) dτ=0tea(tτ)  ebτ dτ=0teat+aτ  ebτ dτ=0teat eaτ  ebτ dτ

eat can be moved outside the integral

y(t)=eat 0teaτ  ebτ dτy(t)=eat 0teaτbτ    dτy(t)=eat 0teτ(ab)    dτy(t)=eat  [eτ(ab)ab]0ty(t)=eat ab [et(ab)1]y(t)=eat+t(ab) eat ab  y(t)=ebt eat aby(t)=eat ebt ba

Which is L7 as required to show.

3.13.13 chapter 15, problem 5.22

Problem

Verify Parseval’s theorem for f(x)=e|x| and g(α)=Fourier transform of f(x)

Solution

Parseval theorem says that total energy in a signal equal to the sum of the energies in the harmonics that make up the signal. i.e.

|g(α)|2 dα=12π|f(x)|2 dx

12π|f(x)|2 dx=12π|e|x||2 dx=12πe2|x| dx=12π{0e2x dx+0e2x dx}=12π{[ e2x2]0+ [e2x2]0}=14π{[ e2x]0 [e2x]0}=14π{[ e00] [0e0]}=14π{1+1}(1)=12π 

Now we find the Fourier transform for f(x)

g(α)=12πe|x|eixαdx=12π[0exeixαdx+0exeixαdx]=12π[0ex(1iα) dx+0e x(1iα) dx]=12π ([ex(1iα)1iα]0+[ex(1iα)1iα]0)=12π (11iα[ex(1iα)]011+iα[ex(1iα)]0)=12π (11iα[ex(1iα)]011+iα[ex(1iα)]0)=12π (11iα[1e(1iα)]11+iα[e(1iα)1])=12π (11iα[1]11+iα[1])=12π (11iα +11+iα )=12π ( 1+iα+1iα(1iα)(1+iα) )=12π (2 1+α2)=1 π(1+α2) 

So

|g(α)|2 dα=|1 π(1+α2)|2 dα=1π21 (1+α2)2dα

But 1 (1+α2)2dα=π2, Hence

|g(α)|2 dα=1π2 (π2) (2)=12π 

Comparing (1) and (2). They are the same. Hence |g(α)|2 dα=12π|f(x)|2 dx was verified for this problem as required.

3.13.14 chapter 15, problem 5.4

Problem

Use convolution integral to find the inverse transform of 1(p+a)(p+b)2

Solution

1(p+a)(p+b)2=1(p+a)1(p+b)2

From but from L6

(L2)L(tkeat)=k!(p+a)k+1

Hence 1(p+a)=L(eat) and 1(p+b)2=L(ebt). Hence the inverse transform of 1(p+a)1(p+b)2=eattebt. Using L34

(L34) g(t)h(t)=0tg(tτ) h(τ) dτ

Hence

eattebt=0tea(tτ) τebτ dτ=0teat+aτ τebτ dτ=0teateaτ τebτ dτ=eat0teaτ τebτ dτ=eat0tτeτ(ab)  dτ

Integrate by parts. u=τ, v=eτ(ab)ab

eattebt=eat{ [τeτ(ab)ab]0t0teτ(ab)ab  dτ}=eat{ [τeτ(ab)ab]0t1ab[eτ(ab)ab]0t  }=eat (1ab[τeτ(ab)]0t1(ab)2 [eτ(ab)]0t ) =eat (1ab[tet(ab)]1(ab)2 [et(ab)1] )=eat (tetatbabetatb1(ab)2)= tetbabetbeat(ab)2= (ab)tetbetb+eat(ab)2 = ((ab)t1)etb+eat(ab)2 

So the inverse laplace transform of 1(p+a)(p+b)2 is ((ab)t1) etb+eat(ab)2

3.13.15 chapter 15, problem 6.2

Problem

Find the inverse laplace transform using 6.6 of the function 1p41

Solution

6.6 states that f(t) = sum of all residues of F(z)ezt at all poles. Poles of F(z)=1z41are at ±1,±i. Hence

F(z)=ezt(z1)(z+1)(zi)(z+i) 

Since each pole is of order 1, we use equation 6.1 page 599 which says

Residue of F(z) at z=z0  is limzz0  (zz0)F(z)

Hence sum of residue is

R=limz+1ezt (z+1)(zi)(z+i) +limz1ezt(z1)(zi)(z+i) +limz+iezt(z1)(z+1)(z+i) +limziezt(z1)(z+1)(zi) = et (1+1)(1i)(1+i) + et(11)(1i)(1+i) + eit(i1)(i+1)(i+i) + eit(i1)(i+1)(ii) =et 4  + et4+eit4i + eit4i = (etet4)12(eiteit 2i)=(etet4)12(sint)

3.13.16 chapter 15, problem 6.4

Problem

Find the inverse laplace transform using 6.6 of the function p3p416

Solution

6.6 states that f(t) = sum of all residues of F(z)ezt at all poles. Poles of F(z)=z3z416are at ±2,±2i, Hence

F(z)=z3ezt(z2)(z+2)(z2i)(z+2i) 

Since each pole is of order 1, we use equation 6.1 page 599 which says

Residue of F(z) at z=z0  is limzz0  (zz0)F(z)

Hence sum of residue is

R=limz+2z3ezt (z+2)(z2i)(z+2i) +limz2z3ezt(z2)(z2i)(z+2i) +limz+2iz3ezt(z2)(z+2)(z+2i) +limz2iz3ezt(z2)(z+2)(z2i) = 8e2t (2+2)(22i)(2+2i) +8e2t(22)(22i)(2+2i) + (2i)3e2it(2i2)(2i+2)(2i+2i) +(2i)3e2it(2i2)(2i+2)(2i2i) =8e2t (4) 8 +8e2t(4)8 +(8i)e2it 8(4i) +(8i)e2it 8(4i) =e2t 4  +e2t4+e2it 4 +e2it 4 = e2t+e2t4+12(cos2t)

So inverse Laplace transform of p3p416 is e2t+e2t4+12(cos2t)

3.13.17 chapter 15, problem 6.5

Problem

Find the inverse laplace transform using 6.6 of the function 3p2p3+8

Solution

6.6 states that f(t) = sum of all residues of F(z)ezt at all poles. To find poles, look at p3+8=0, hence p3=8, p=813. Let

813=reiθ

Then the roots are

=813ei03,813ei(0+2π)3,813ei(0+4π)3=813 ,813(cos2π3+isin2π3),813(cos4π3+isin4π3)=2 ,2(cos1200+isin1200),2(cos2400+isin2400)=2 ,2(12+i32),2(12+i32)=2,1+i3,1i3

Hence

p=2,1i3,1+i3

And

F(z)=3z2z3+8ezt=3z2(z+2)(z(1i3))(z(1+i3))ezt

Since each pole is of order 1, we use equation 6.1 page 599 which says

Residue of F(z) at z=z0  is limzz0  (zz0)F(z)

Hence sum of residue is

R=limz23z2 (z(1i3))(z(1+i3))ezt+limz(1i3) 3z2(z+2)(z(1+i3))ezt+limz(1+i3)3z2(z+2)(z(1i3))ezt= 3(2)2 (2(1i3))(2(1+i3))e2t+ 3(1i3)2((1i3)+2)((1i3)(1+i3))e(1i3)t + 3(1+i3)2((1+i3)+2)((1+i3)(1i3))e(1+i3)t=12 (3+i3)(3i3)e2t+ 3(22i3)(3i3)(2i3)e(1i3)t+ 3(2+2i3)(3+i3)(2i3)e(1+i3)t= 12 12e2t+  66i36i36e(1i3)t+ 6+6i36i36e(1+i3)t= e2t+ e(1i3)t+e(1+i3)t= e2t+ etei3t+etei3t= e2t+ et(ei3t+ei3t)= e2t+ et(2cos3t)

So inverse Laplace transform of 3p2p3+8 is e2t+ et(2cos3t)

3.13.18 chapter 15, problem 6.9

Problem

Find the inverse laplace transform using 6.6 of the function pp41

Solution

6.6 states that f(t) = sum of all residues of F(z)ezt at all poles. To find poles, look at p41=0, hence p4=1, p=114. Let

114=reiθ

Then roots are

=114ei04,114ei(0+2π)4,114ei(0+4π)4,14ei(0+6π)4=1 ,1(cos2π4+isin2π4),1(cos4π4+isin4π4),1(cos6π4+isin6π4)=1 ,(0+i),(1+i 0),(0i 1)= 1,i,1,i

Therefore

p= 1,i,1,i

Hence

F(z)=zz41ezt=z(z1)(zi)(z+1)(z+i)ezt

Since each pole is of order 1, we use equation 6.1 page 599 which says

Residue of F(z) at z=z0  is limzz0  (zz0)F(z)

Hence sum of residue is

R=limz1z (zi)(z+1)(z+i)ezt+limzi z(z1)(z+1)(z+i)ezt+limz1z(z1)(zi)(z+i)ezt+limziz(z1)(zi)(z+1)ezt= 1 (1i)(1+1)(1+i)et+ i(i1)(i+1)(i+i)eit + 1(11)(1i)(1+i)et+i(i1)(ii)(i+1)eit=1 4et+ i4ieit +14et+i4ieit=1 4(et+et)12(cost)

So inverse Laplace transform of pp41 is 1 4(et+et)12(cost)

3.13.19 chapter 15, problem 7.11

Problem

Using the δ function method, Find the response of the following system to a unit impulse. d4ydy4y=δ(tt0)

Solution

Taking the laplace transform of each side gives (assuming initial conditions for the system are at rest)

Yp4Y=ept0Y =ept0p41Y =ept0(p21)(p2+1)

Finding the inverse laplace of 1(p1)(p+1)(p2+1)=1(p1)(p+1)1(p2+1)=GH. Then g(t)=etet2using L7 and, h(t)=sint using L3. Hence the inverse transform is      

g(t)h(t)=0teτeτ2sin(tτ) dτ=12(sinhtsint)

Using L28 with the result above we get

y(t)={12(sinh(tt0)sin(tt0))t>t00t<t0

Or by expressing sinh using exp, the above becomes

y(t)={14(ett0et+t02sin(tt0))t>t00t<t0

3.13.20 chapter 15, problem 7.7

Problem

Using the δ function method, Find the response of the following system to a unit impulse. y+2y+y=δ(tt0)

Solution

Take the laplace transform of each side we get (assume initial conditions for a system at rest)

Yp2+2Yp+Y=ept0Y =ept0p2+2p+1Y =ept0(p+1)2

Using L28 and L6 (for k=1)

y(t)={(tt0)e(tt0)t>t00t<t0

3.13.21 chapter 15, problem 7.9

Problem

Using the δ function method, Find the response of the following system to a unit impulse. y+2y+10y=δ(tt0)

Solution

Taking the laplace transform of each side we get (assume initial conditions for a system at rest)Yp2+2Yp+10Y=ept0Y =ept0p2+2p+10Y =ept0(pa)(pb)

Where a=1+3i, b=13i the roots of p2+2p+10. Using L28 and L7y(t)={ea(tt0)eb(tt0)(b)(a)t>t00t<t0 Replacing values for a,b givesy(t)=ea(tt0)eb(tt0)ab=e(1+3i)(tt0)e(13i)(tt0)(1+3i)(13i)=e(1+3i)(tt0)e(13i)(tt0)6i= et+t0+3it3it0et+t03it+3it06i=et+t0 e3i(tt0)e3i(tt0)6i=et+t0(13)( e3i(tt0)e3i(tt0)2i)=et+t03sin3(tt0)

Thereforey(t)={et+t03sin3(tt0)t>t00t<t0