[next] [prev] [prev-tail] [tail] [up]
cos(iθ)=cosh(θ)sin(iθ)=isinh(θ)
cos2(θ)+sin2(θ)=1tan2(θ)=1cos2(θ)−1=sec2(θ)−1cos2(θ)sin2(θ)+1=1sin2(θ)1tan2(θ)=1sin2(θ)−1cot2(θ)=csc2(θ)−1cosh2(θ)−sinh2(θ)=1
sin(2θ)=2sin(θ)cos(θ)cos(2θ)=cos2(θ)−sin2(θ)=2cos2(θ)−1=1−2sin2(θ)tan(2θ)=2tan(θ)1−tan2(θ)sinh(2θ)=2sinh(θ)cosh(θ)cosh(2θ)=2cosh2(θ)−1tanh(2θ)=2tanh(θ)1+tanh2(θ)
sin(θ)=cos(π2−θ)cos(θ)=sin(π2−θ)
sin(A+B)=sinAcosB+cosAsinBsin(A−B)=sinAcosB−cosAsinBcos(A+B)=cosAcosB−sinAsinBcos(A−B)=cosAcosB+sinAsinBtan(A+B)=tanA+tanB1−tanAtanBtan(A−B)=tanA+tanB1+tanAtanB
sin2(θ)=12(1−cos(2θ))cos2(θ)=12(1+cos(2θ))tan2(θ)=1−cos(2θ)1+cos(2θ)
sinA+sinB=2sin(A+B2)cos(A−B2)sinA−sinB=2sin(A−B2)cos(A+B2)cosA+cosB=2cos(A+B2)cos(A−B2)cosA−cosB=−2sin(A+B2)sin(A−B2)
sinAsinB=12(cos(A−B)−cos(A+B))cosAcosB=12(cos(A−B)+cos(A+B))sinAcosB=12(sin(A+B)+sin(A−B))cosAsinB=12(sin(A+B)−sin(A−B))
acos(ωt)+bsin(ωt)=Asin(ωt+ϕ)=Acos(ωt−ϕ)A=a2+b2ϕ=arctan(BA)cosx+sinx=2sin(x+π4)cosx+sinx=2cos(x−π4)
Laws of sines (a,b,c) are lengths of triangle sides and A,B,C are facing angles.asinA=bsinB=csinC laws of cosinea2=b2+c2−2bccosA
Γ(n)=(n−1)!Γ(n+1)=n(n−1)!=nΓ(n)
For n≫1Γ(n+1)=n!=2πnn+12e−n
[next] [prev] [prev-tail] [front] [up]