5.6 Identities

5.6.0.1 trig and Hyper trig identities

cos(iθ)=cosh(θ)sin(iθ)=isinh(θ)

cos2(θ)+sin2(θ)=1tan2(θ)=1cos2(θ)1=sec2(θ)1cos2(θ)sin2(θ)+1=1sin2(θ)1tan2(θ)=1sin2(θ)1cot2(θ)=csc2(θ)1cosh2(θ)sinh2(θ)=1

sin(2θ)=2sin(θ)cos(θ)cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)tan(2θ)=2tan(θ)1tan2(θ)sinh(2θ)=2sinh(θ)cosh(θ)cosh(2θ)=2cosh2(θ)1tanh(2θ)=2tanh(θ)1+tanh2(θ)

sin(θ)=cos(π2θ)cos(θ)=sin(π2θ)

sin(A+B)=sinAcosB+cosAsinBsin(AB)=sinAcosBcosAsinBcos(A+B)=cosAcosBsinAsinBcos(AB)=cosAcosB+sinAsinBtan(A+B)=tanA+tanB1tanAtanBtan(AB)=tanA+tanB1+tanAtanB

sin2(θ)=12(1cos(2θ))cos2(θ)=12(1+cos(2θ))tan2(θ)=1cos(2θ)1+cos(2θ)

sinA+sinB=2sin(A+B2)cos(AB2)sinAsinB=2sin(AB2)cos(A+B2)cosA+cosB=2cos(A+B2)cos(AB2)cosAcosB=2sin(A+B2)sin(AB2)

sinAsinB=12(cos(AB)cos(A+B))cosAcosB=12(cos(AB)+cos(A+B))sinAcosB=12(sin(A+B)+sin(AB))cosAsinB=12(sin(A+B)sin(AB))

acos(ωt)+bsin(ωt)=Asin(ωt+ϕ)=Acos(ωtϕ)A=a2+b2ϕ=arctan(BA)cosx+sinx=2sin(x+π4)cosx+sinx=2cos(xπ4)

Laws of sines (a,b,c) are lengths of triangle sides and A,B,C are facing angles.asinA=bsinB=csinC laws of cosinea2=b2+c22bccosA

5.6.0.2 GAMMA function

Γ(n)=(n1)!Γ(n+1)=n(n1)!=nΓ(n)

5.6.0.3 Sterling

For n1Γ(n+1)=n!=2πnn+12en